令和2年度科学技術分野の文部科学大臣表彰受賞者の業績概要

	ふ り 氏	が な 名	年齢	勤 務 先	業 績 名		業績の概要
科学技術	-		41	マツダ(株) 車両開発本部 装備開発部	環境性と商品性 と経済性を両立 できるバイオエ ンプラの開発	【課題】	地球環境への配慮のため、バイオプラスチック(植物由来の原料を用いたプラスチック) の適用を検討する対象が拡大しているが、バイオプラスチックは、石油系プラスチックと原 料や製造方法が異なるため、材料コストが高いことが採用のネックとなっていた。 また、自動車部品に要求される性能が高いことから、バイオプラスチックの自動車部品へ の適用は、拡大していなかった。
賞		まうへい 洋平				【工夫】	・自動車部品にも適用できる性能や特徴を持たせたバイオエンプラを開発した。 ・本開発材料自体に着色し、自動車部品に求められる部材表面の滑らかさや深みのある色合い等、塗装では実現できない高質感を実現するとともに、塗装工程を廃止した。
開発部門						【成果】	・当初は、カップホルダーリングの小型の内装部品に採用していたが、現在では、フロントグリル等の大型外装部品に採用できるまでに技術を進化させ、従来の塗装を超える質感を実現し、際立つデザインに貢献した。 ・塗装工程廃止により環境負荷を低減するとともに、部品レベルでコスト改善を行った。
創意	かわだ河田	e to be to the total to	52	中国電力	変圧器取付バンド(分離型)の考案	【課題】	従来から使用していた変圧器取付バンド(柱上変圧器を電柱に施設する際に使用する機材)は、重量、大きさ、特殊部材の使用などにより、下記のような課題があった。 ・車両が進入できない山間部等に施設する際、部材の運搬・組立に多大な労力を要していた。 ・重量が約20kgあり、柱上への吊上げに高所作業車の油圧ウインチ等による動力が必要であった。 ・ボルトのサイズが一般的に使用するサイズと異なり、作業が複雑となっていた。 ・変圧器の容量ごとに取付する部材が異なっていた。
T	_{まつもと} 松本	けんじ	52	ネットワーク (株)		【工夫】	・軽量かつ小型で取り扱いがシンプルな「変圧器取付バンド(分離型)」を考案し、導入した。 (従来品と比べて、重量 50%、専有面積 60%削減) ・電柱取付箇所のバンド部分について、一般的な部材に代替することにより、部材の共有化と 取付手順の統一化を図るとともに、使用する部材の統一により、作業工程を簡素化した。
夫						【成果】	・軽量化、小型化により、車両が進入できない現場にも人力で運搬できるようになった。 ・作業工程の簡素化が図られ、生産性の向上につながった。 ・上記に伴い、コストダウンに寄与した。
功	させる	ささき のぶき 佐々木 伸樹	24	JFE スチール(株) 西日本製鉄所	転写マーク対 策の考案	【課題】	炉内から出た高温の鋼板を水で冷却する水冷帯から、「転写マーク」と言われる品質欠陥が発生することから、これを軽減するために、「水切りロール研磨作業」を行っている。 「転写マーク」が多発するため、「水切りロール研磨作業」を平均週1回行う等、高い頻度 で対応していたが、この作業は、回転中のロールを直接研磨棒で磨く危険な作業であった。
労	nate 岩谷	しょう た	26			【工夫】	汚れの成分分析をしたところ、タンク水の汚れが水切りロールへ付着し、「転写マーク」の 原因となっていることが判明したことから、次のような対策をした。 ・洗浄スプレー量を増加させることで、汚れの混入率を低下させた。
者		祥太					・水切りロールの圧下力を低減させた。 ・ドライヤーの温度を変更することで、渇き不良を防止した。 ・スプレーの洗浄を「直線的噴射」から「鋼板全幅への高圧噴射」に変更した。
賞	いけむる					【成果】	・「転写マーク」の解消に成功し、手直し・手戻りが減少するとともに、直行率(すべての検査に一度で合格する比率)が約 20%改善し、製造原価の低減にもつながった。 ・危険作業である「水冷帯水切りロール研磨作業」を廃止することができた。