13 原子間力顕微鏡像を特徴づけるパラメータを抽出する試み

大橋俊彦

Trial of finding the Parameters used AFM Image Characterization

OHASHI Toshihiko

The way to find the parameters which marks the difference of two kinds of AFM image was considered. In vertical direction , the difference of AFM image was marked by the value of the height distribution (mean, median and mode). And the difference can be expressed by the parameter indicating the roughness (maximum height , arithmetic average roughness and square average roughness) ,too.

In plane direction, a few method for estimate average peak distance was found, but he difference of AFM image was not marked by this parameter.

1 緒 言

材料の表面で起こる様々な現象は表面の材質や化学 構造ばかりでなく形状にも影響されることが考えられ る。そのような場合に多変量解析等の手法で現象を予 測するためには表面形状を表す指標の数値化が必要と なり,そのための画像解析手法が多く公開されている。

本研究では高度な市販ソフトウェアを使わず,見か けの異なる2種類のAFM像からその違いを表すパラメ ータの抽出を試みた結果を報告する。

2 実 験

2.1 装置

AFM 像は DI (Degital Instrument) 社製 NanoScopeIIIa を 用い,タッピングモードで観察した。この方法では硬さ 像と位相像を同時に観察できる。

2.2 試料

市販の PET フィルム(東レ㈱製ルミラー)の受け入れ

(1)

材と大気圧プラズマ処理材について表面を観察した。 その画像を図1に示す。

3 結果と考察

3.1 AFM 3 次元画像

受け入れ材では山の高さが比較的そろっているのに対 して、プラズマ処理材では低い山に交じって部分的に高 い山があるなど、直感的に違いがあるように感じられる。 この違いを数値的に表すことを試みた。

それぞれの断面プロファイルの一部を図2に示す。 縦(高さ)方向の違いを表すために高さの分布と粗さ を求めた。また横(面)方向の違いを表すためにピー ク間距離を求めることを試みた。

3.2 縦(高さ)方向のパラメータ

まず測定した各ポイントの高さをヒストグラム化した。その結果を図3に示す。本来は各ピークの高さで 同様の処理を行うべきと考えるが簡易的に測定された 全ポイントの高さで代用した。

(2)

(1)as received, (2)after Plasma Processing , 500nm 角, Z Range:10nm

図3 試料(PET フィルム)表面の高さの分布

図3より2つの画像で高さの分布に大きな違いがあることがわかる。この両者について算術平均,最頻値 (モード),中央値(メディアン)を求めた(表1)。

また表面の面粗さを表すパラメータ(最大高さ(Sz), 算術平均粗さ(Sa),二乗平均粗さ(Sq))を求めて表 2に示す。粗さについても2つの試料で差があることが 確認できた。

3.3 横(面)方向のパラメータ

横(面)方向のパラメータについては,まず方法 1 として簡易的に断面のいくつかについてピーク間距離 を求め,その平均をパラメータとして扱うこととした。

高さの値から直接ピークを求めることは、縦軸の分解 能が不十分であることとノイズが大きいことのためでき なかった。そこで両試料のいくつかの断面についてショ ルダーを含めたピークの数を数えたところ概ね 13~14 であり平均ピーク間距離は 36~38nm となった。

次に方法2として自己相関関数から平均ピーク間距離

表1	試料	(PET フィ	ィルム)	表面の高さの各種代	表値
	MP VI I				

	Average	Median	mode
as received	6.76	6.75	9.75
after Plasme Processing	5.09	4.75	5.25

表2 試料(PET フィルム)表面粗さの値

	Sz	Sa	Sq
as received	13	1.58	1.96
after Plasme Processing	11.5	1.38	1.74

図4 PET フィルムプラズマ処理材の断面プロファイル の自己相関関数及びその2次・3次微分曲線

を求めることを試みた。図2に示した断面の自己相関関数とその2次・3次微分曲線を図4に示す。3次微分が 負から正の方向にX軸を横切り2次微分が下向きのピー クを示す点を自己相関関数のピークと考え、その最も小 さい値を隣り合うピークの平均距離として両試料で各 10ヶ所の断面についてピークの平均距離を求めたとこ ろ、どちらの試料も35~40nmでほぼ同程度であった。

また,図5にプラズマ処理材の100nm角の領域の 硬さ像を示すが,ここに現れたドメインの大きさは直 径ほぼ20~35nmであり,上記の2方法で求めたピーク の平均距離とほぼ一致している。

1. 180 E. J	nest in a	1.1.1	See.	and the
1997 av 199				
100 A 200				
Mar S.				
C. C.				

図5 PET フィルムプラズマ処理材の硬さ像 100nm 角

4 結 言

AFM の画像データからその形状を特徴づけるパラメ ータの抽出について検討し、いくつかの有効なパラメー タとその抽出法を得た。縦(高さ方向)は高さの分布と 表面粗さで特徴出来ることができ、横(面)方向は平均 ピーク間距離で特徴出来ることができた。

PET フィルムの受け入れ材とプラズマ処理材で、縦 (高さ)方向には差が認められたが横(面)方向は明 確な差は認められなかった。