負荷曲線データを活用した 鉄工やすりの切削性能に寄与する 形状パラメータの検討

広島県立総合技術研究所

西部工業技術センター

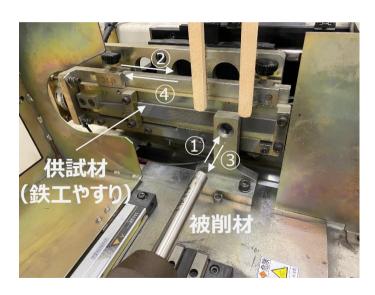
発表者:加工技術研究部 藤本直也

やすりのシェア

- 呉市仁方で日本の生産量95%(2010年)
- 50社近くが集まるやすり工業団地で生産

出典:wikipedia「仁方やすり」

https://ja.wikipedia.org/wiki



資料:ツボサン「ブライト-900」 tsubosan.co.jp

やすり切削性能試験機


- 唯一のやすり切削性能試験機
- 数千回ほど往復させ、耐久性や切削性(=切削重量)を評価する

1サイクル ①被削材前進、やすりに接触 ②やすり左→右スライド ③被削材後退 ④やすり右→左スライド

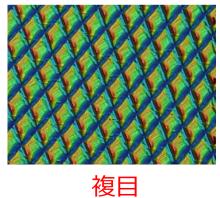
試験の様子

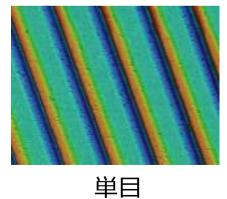
Copyright © 2020 Hiroshima Prefecture. All rights reserved.

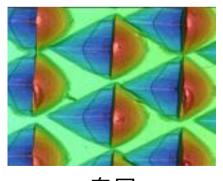
研究目的

■ AIによる予測で性能評価にかかる時間を短縮する

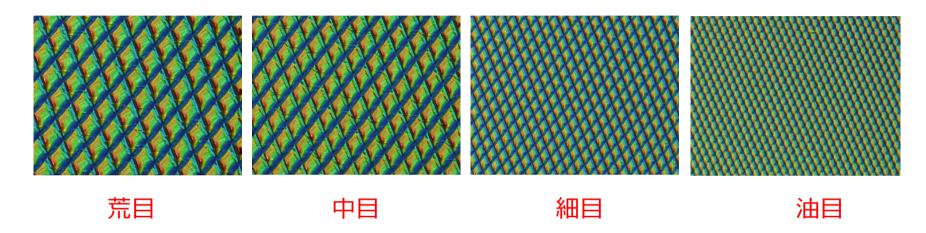
三次元形状測定機 3分


出典:keyence「VR-3000」


やすりの種類


■形状

切り目



鬼目

やすりの種類

■ 目の大きさ

赤字の製品を実験に使用する

実験方法ーやすり試験

供試材:鉄工やすり50種類

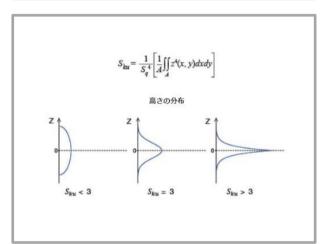
被削材:合金工具鋼鋼材SKD61相当材

■ 押し付け力:60N

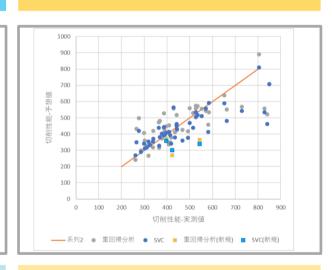
■ 切削速度:125mm/sec

■ 切削回数:100回

■ アウトプット:切削性能


SKD61相当材

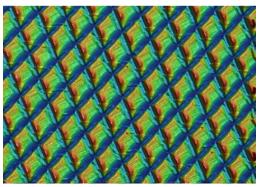
実験方法


形状パラメータ

性能分類

性能予測

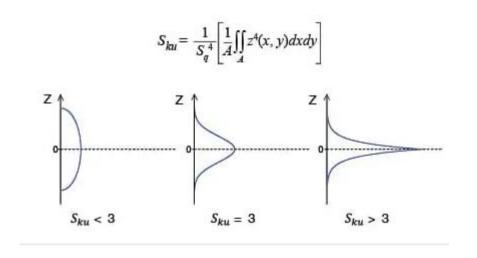
0.4 50	n . / aa .an /		0.0 05%	
accuracy: 81.50	% +/- 22.12% (n	nicro average:	80.85%)	
	True. Rank3	True. Rank2	True. Rank1	Precision
Pred. Rank3	7	2	0	77.78%
Pred. Rank3	3	17	1	80.95%
Pred. Rank3	1	1	14	82.35%
Recall	63.64%	80.95%	93.33%	
Recall	63.64%	80.95%	93.33%	


先端形状や高さに関わる 形状パラメータのうち, 切削性能に効く要素の発見

切削性能を3段階に分け 80%程度の精度で分類 重回帰分析より高い精度で 性能予測を実施

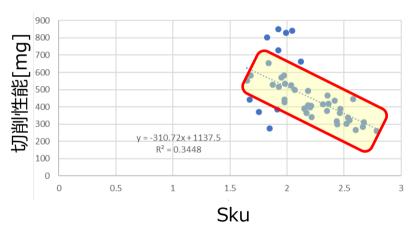
実験方法-三次元形状測定機

■ 負荷曲線から形状パラメータを作成,やすり試験の結果から相関係数を確認

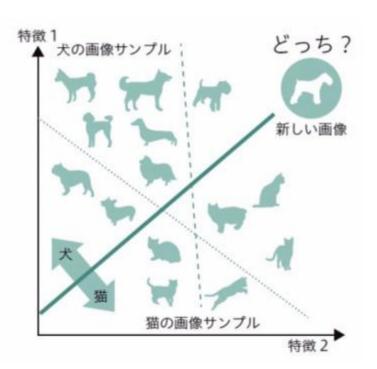


ID	初期パラメータ
size	0.389
arame	-0.046
nakame	0.036
hosome	0.066
aburame	-0.093
mesuu	-0.085
Sa	0.269
Sz	0.007
Spc	0.419
Sdr	0.238
Sq	0.234
Ssk	-0.279
Sku	-0.587
Sp	-0.055
Sv	0.101
Sdq	0.231
Spd	-0.073
Sk	0.362
Spk	-0.290
Svk	-0.090
Smr1	-0.169
Smr2	0.217
Sxp	0.102
Vvv	0.061
Vvc	0.272
Vmp	-0.223
Vmc	0.275

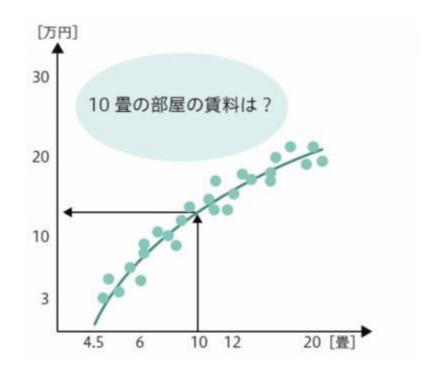
ID	負荷曲線パラメータ		
max_height	-0.055		
min_height	-0.101		
max_percent	-0.177		
max_percent_height	-0.302		
VAR.P	0.268		
STDEV.P	0.235		
quartile_25	-0.290		
quartile_50	-0.035		
quartile_75	0.372		
plus_menseki	0.271		
mainasu_menseki	-0.270		
01up	0.263		
01low	-0.212		
1per_check	0.341		
01per_check	-0.173		
sum_par	0.027		
heights	0.007		
01per_plus_menseki	-0.237		
01per_minus_menseki	-0.098		
menseki	0.258		
menseki2	0.238		
menseki3	0.332		


形状パラメータの例

■ Sku(尖り度), 負荷曲線の先端の形状に関するパラメータ


出典: keyence「粗さ入門.com」 keyence.co.jp

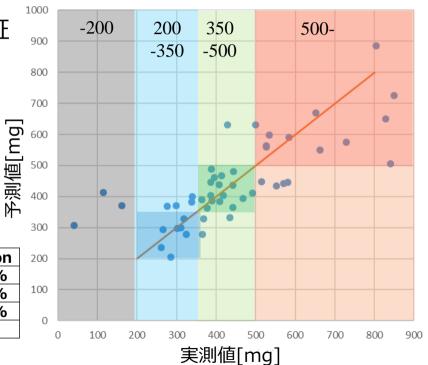
Skuと切削性能の相関



教師あり機械学習

■分類

■回帰

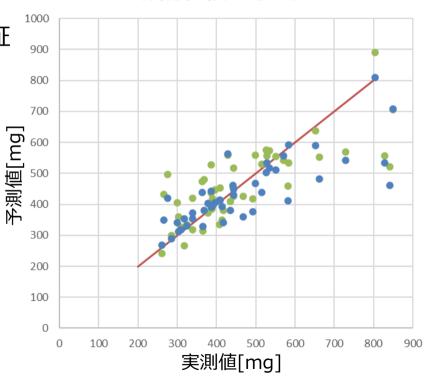

切削性能の予測ー性能分類

- ランダムフォレストによる切削性能の分類
- 学習データ:検証データ=40:10で交差検証
- 性能をよい・普通・悪いの3段階に分け、 80%の精度で該当する性能を的中した

accuracy: 81 50% ±/- 22 12% (micro average: 80 85%)

accaracy: 01:50 % 1/ 22:12 % (micro average:00:05 %)					
	True. Rank3	True. Rank2	True. Rank1	Precision	
Pred. Rank3	7	2	0	77.78%	
Pred. Rank3	3	17	1	80.95%	
Pred. Rank3	1	1	14	82.35%	
Recall	63.64%	80.95%	93.33%		

切削性能の予測


実測值=予測值

切削性能の予測ー性能予測

- Support Vector Machineによる性能予測
- 学習データ:検証データ=40:10で交差検証
- 重回帰分析と比較して, 精度が高い予測
- 性能が高いサンプルは、予測の精度が低い 今後サンプルを増やすことで、精度の向上が 望める

	単位	重回帰分析	AI
RMSE(二乗平均平方根誤差)	mg	102.3	101.5
MAE(平均絶対誤差)	mg	75.4	63.6
MAE/切削性能の平均値	%	16.3	13.7

切削性能の予測

まとめ

- やすりの表面形状からパラメータを抽出し、切削性能との相関性を確認した
- 切削性能に寄与する形状の傾向が確認できた
- 表面形状パラメータから性能の良し悪しを高い精度で分類することができた
- 重回帰分析と比較して、精度が高い性能予測が可能であった
- サンプル数を増やして、学習を進めることで、モデルの精度を高めることができる
- 数時間かかる試験の結果を数分の表面測定で予測できるようになった
- 一連のデータ取得~予測の流れは、性能評価が必要な他の機械部品にも応用できうる

【お問合せ先】

広島県立総合技術研究所 西部工業技術センター 技術支援部

E-mail: wkcgijutsu@pref.hiroshima.lg.jp

URL: https://www.pref.hiroshima.lg.jp/soshiki/27/

→ 「お問合せホームはこちらから」 をクリック

TEL: 0823-74-1151