8 FIB-TOF-SIMS 主成分分析による広島東照宮本地堂漆塗りの解析

田邉栄司

Principal component analysis of FIB-TOF-SIMS spectra image data from lacquered surface

TANABE Eishi

Xe plasma FIB (PFIB)-TOF-SIMS were carried out on lacquered surface of Edo Period shrine building. To minimize the data size, 3D spectra image data were compressed to 2D and convert to integer, m/q. Principal component analysis of Image Processing ToolboxTM Hyperspectral Imaging Library of MATLABTM was utilized to analyze the spectra image data. There was a problem that some components showed negative intensities, but the results helped to understand the distribution of inorganic compounds.

キーワード: TOF-SIMS, FIB-SEM, 主成分分析, 漆

1 はじめに

SIMS(二次イオン質量分析法)は半導体産業から地殻 コアの同位体分析まで幅広く活用され,近年はX線分析 で検出困難なリチウムイオン電池正極材料中の^{6,7}Li分 布の確度の高い解析手法として定着している。しかしな がら,高価な専用装置と専門的なオペレーション技術が 必要で,10数年前に発表された CAMECA nanoSIMS 50

(空間分解能 50nm) でさえ国内に数台しかなく,放射光 施設や超高圧電子顕微鏡に比べても利用のためのアクセ スが困難である。

一方で薄膜の断面観察,TEM 用薄片試料作製や三次元 観察の用途でより広範に普及している汎用 FIB(集束イ オンビーム加工機)及び FIB-SEM は、ビーム径が Ga-LMIS(液体イオン源)で約 10nm,Xe プラズマで約 65nm と細く、イメージング可能なイオン源を持つ。このため、 まず TOF(飛行時間型)-SIMS 検出器を Ga-LMIS の FIB-SEM Carl Zeiss Auriga¹⁾に搭載する試みが行われた。し かしながら、専用機に比べてイオンの検出効率が 1,000 分の1程度と著しく低く、普及には至らなかった。その 後、TESCAN が二次イオンの励起効率が高いXe プラズマ をイオン源とする PFIB²⁾に搭載することで実用的な分析 ツールとして商品化した。

本研究で使用した装置は、ポリマー構成成分分布の可 視化を目的の一つとして、2019 年度に内閣府地方大学地 域産業創生交付金事業「ひろしまものづくりデジタルイ ノベーション創出プログラム」で導入された国内初の TOF-SIMS 搭載 PFIB-SEM である。空間分解能サブμm オ ーダでの有機・無機成分の二次元・三次元マップ手法開 発のため、天然樹脂と粘土鉱物の混合物である漆塗りの FIB-TOF-SIMS スペクトルイメージデータの主成分分析を 試みた結果とその課題を報告する。

2 実験方法

2.1 試料及び TOF-SIMS 測定

Tofwerk 製 TOF-SIMS 検出器を搭載した PFIB-SEM, Thermo Fisher Scientific 製 FEI Helios G4 PFIB CXe を使用し,漆塗り表面に対し鉛直方向から Xe イオンを 照射し,スペクトルイメージデータを測定した。試料は 広島市指定の重要文化財広島東照宮本地堂の修復に際し て採取されたもので,漆塗りが付着した部材から,木質 部ともにカッターナイフで削ぎ落した。5箇所から採取 したものの中から,粉末 X線回折及び SEM-EDS 元素マッ プによって,漆塗りと推定された①化粧裏板(当初)と ②天井板の2種類の試料を選択した。PFIB 試料は 1/2inch 標準ピンスタブにカーボンテープで貼り付け, チャージアップによるイオンの捕集率低下を防ぐため, Plasma Multi Coater APC-120 で Pt を 30mA/20 秒間ス パッタし,**表1**の条件で試料室の圧力が 1×10⁻³Pa 未満 の雰囲気で測定した。

陽イオンを測定する Positive と陰イオンを測定する Negative の2つの条件で測定した。切り替えの際, 意図 的に測定領域を移動させてはいないが, TOF 検出器の電 位の反転によって PFIB のイオンビームが移動するため, 厳密には領域が一致していない。

表1 TOF-SIMS の測定条件

機能	項目	条件		
FIB	加速電圧/電流	30kV/0.10nA		
	測定範囲(xy)	$50 imes 43 \mu$ m		
TOF	質量範囲(m/Q)	0~176		
	画素数(Binning)	512×442 (2×2) pixel		
	フレーム数	1,024frames		

2.2 主成分分析によるマップ作成

TOF-SIMSの成分同定は、無機材料の場合は、各元素の 代表的な同位体質量のピークを、ポリマー等有機材料の 場合は、PS(91)、PET(104)といった特徴ピークを用い て行われることが多い。しかしながら、Xe プラズマ FIB でのイオンの励起及びフラグメントについての知見が全 くないため、横山、青柳ら³³の多変量解析の考え方を応 用することとした。

TOF-SIMS のデータは各 voxel のスペクトルデータが HDF5 形式ファイルに格納されている。今回の測定の場合, 1 視野の Positive と Negative それぞれにつき,約 45,000channel のスペクトルが 256pixel×221pixel× 1,024frames=約 5,800 万 voxel ごとに収納され,1視 野につき約 6GByte の膨大なサイズになっていた。今回 の解析では,計算量を削減するため,Tof Explorer を使 用し,質量 m/q は 5~160 の範囲で±0.5 のウィンドで 整数化,深さ z 方向は同一 xy 座標で積算し, 156channel×256pixel×221pixel の元データの約 30 万 分の1にデータサイズに圧縮した。このため、サテライ トピークやピークシフト,深さ方向の分布は無視するこ とになった。

主成分分析には衛星画像のリモートセンシングに活用 される MATLAB R2022a の Image Processing Toolbox[™] の Hyper Image Library のハイパースペクトルイメージ ング関数「hyperpca」の波長を m/q に置き換えて使用し た。データの入出力を除き, 1行の Scripts で完結した。

3 結果及び考察

3.1 主成分分析結果

主成分数を6成分と設定し、「hyperpca」関数から導 出された主成分分析の結果を図1及び図2に示した。図 1は各成分の分布をマップしたもので、分布密度は疑似 カラーとして各画像の中で規格化されており、黒ー青ー 緑ー黄ー赤の順で赤が最も分布密度が高くなる。図2は 各成分のスペクトルで、各成分において特徴的な m/q や 対応する元素名を記載している。m/q=1~4 の範囲に装 置由来の Pulser Ringing と呼ばれる高強度のピークが 存在しているが、ここでは強度値を入力していないため、 0となっている。また、①Positive の成分6にはグラフ の領域外、m/q>80 に高いピークが存在したのでそれら の質量数と元素名も記載した。

図1において、①の成分1及び②の成分 1・2 は Positive と Negative に相関があるように見えるが、そ れぞれ独立した計算から導出されたものである。

「hyperpca」関数の内容はブラックボックスではある が、関数本来の目的である光の波長スペクトルには存在 しないはずの負の値を持つ成分が示されている。このこ とから、光の特性に関連した境界条件は設定されておら ず、比較的純粋に数学的な処理が行われていると推定さ れる。なお、負の密度分布となったものは無かった。

図1 6 成分と仮定した際の各成分の分布密度を疑似カラー表示(低→高:黒→青→緑→黄→赤),①広島東照 宮本地堂化粧裏板(当初),②同天井板。

図2 各成分の m/q=5~80 のスペクトル。主なピークで元素との対応が推定されるものは質量数と元素名,推定 できないものは質量数のみを示した。

²⁷ А1 1 <u>0 µ</u> m	⁴⁰ Ca	³⁹ K	²³ Na	²⁸ Si	¹⁸⁸ Ba
Al-K	Ca-L	K-L	Na-K	si-K	Ba-M
10 <u>µ</u> m					

図3 ①positive 成分 1~6 を最高強度の m/q に対応する元素の TOF-SIMS(上)及び SEM-EDS(下)元素マップ

3.2 分布密度の妥当性

図3に①positive の成分 1~6 において各最高強度に なった m/q に対応する元素の TOF-SIMS の同位体分布及 びその妥当性を検証するための SEM-EDS 元素マップ

(5kV/1.6nA/50µ秒×128 フレーム)を示した。EDS マ ップでもなるべく表面敏感な分布が得られるように,加 速電圧を下げて電子線の侵入深さを低減するとともに, 大電流で感度を確保した。その結果,EDS マップでは Ca とKは励起効率の低いL線,BaはM線を使用することに なった。また,イオン源と電子銃が 52°の角度をつけ て設置されているので,完全には同一位置を撮影できず, 視野サイズや回転角もずれている。

TOF-SIMS の結果同士を図1最上段と図3上段で比較 すると階調の違いはあるものの,分布傾向や粒子サイズ に顕著な差異は無く,成分数の設定等によって計算過程 で生成される偽分布は見られなかった。また,少なくと も1μmの空間分解能を発揮していることが分かった。

一方,図3下段 SEM-EDS 元素マップは TOF-SIMS に比 べて,全般に感度が低い上,上段の TOF-SIMS において 高密度に分布している領域でも,強度のある箇所と無い 箇所が存在した。TOF-SIMS では nm オーダの最表面の質 量分布が表示されるのに対して,SEM では電子線そのも のの侵入や発生した X線の二次励起によって深さµm 程 度までの組成情報が積算された結果が表示されることに なる。特に体積の小さい微粒子からの特性 X線強度が相 対的に低下し,ノイズに埋もれたものと考えられる。こ のことから,漆のように軽元素で構成された有機系材料 中の元素マップには,感度及び空間分解能ともに EDS よ りも TOF-SIMS が適していると考えられる。

3.3 負のピークと同位体比率

図2の各成分 3~6 の範囲で顕著に見られる負のピークは原理的に存在しないものであり、成分の足し合わせのつじつまを合わせるために、計算過程で生じたものだと推定される。このため、特に大きな負のピークを持つ成分については、妥当性が低いものと考えられる。一方で、Negativeの①の成分2・3及び②の成分2~4 で見られる ³⁵C1 対 ³⁷C1 の同位体比はほぼ3対1で、天然同位体比率約75.8%対24.2%と矛盾していない。

3.4 同定不能ピーク

図2の①・②Negative の各成分において、単元素で 説明できない m/q=24, 26, 17 といったピークが見られ た。特に①・②Negative の成分2は、質量スペクトルが 類似している上、分布範囲も広く、漆の成分を反映した ものと推定される。Positive には同定できないピークが ほとんど見らなかったことから、有機物由来のスペクト ルは Negative に含まれている可能性が高いものと考え られる。

4 まとめ

MATLAB のハイパースペクトルイメージ関数を使用した 主成分分析によって,天然樹脂と粘土鉱物の混合物であ る漆塗りの FIB-TOF-SIMS スペクトルイメージデータか ら,無機物の二次元分布のマップが得られた。一方,有 機物については Negative に漆の成分を反映した可能性 のある成分が見られたが,分布に対応しているという確 証は得られなかった。

有機物のマップのためには,成分及び分布密度がとも に負にならない等の境界条件の設定が必要になると考え られる。現時点で Hyper Image Library の中にそれを実 現する関数やコンポーネントは用意されておらず。課題 として残された。また,漆塗りの標準的なスペクトルを 取得し,定性的に比較するため,トレーサビリティのあ る現代の漆塗り試料を入手する予定である。

謝辞

試料とその詳細な情報を提供していただいた術島津漆 彩色工房の島津亮介取締役には深く感謝いたします。

また、広島大学デジタルものづくり教育研究センター の泉宏明博士の御尽力と、Tofwerk 社からの dll ファイ ルの提供で、HDF5 ファイルから直接の各 voxel のスペク トルデータ抽出も可能になり、データ構造についての多 くの知見が得られました。このことに深く御礼申し上げ ます。

文 献

- 1) Y. Kuga : private communications
- 2) F. A. Stevie, L. Sedlacek, P. Babor, J. Jiruse,
 E. Principe, K. Klosova: JSurf. SIMS proceedings paper, Interface Anal. (2014) https://doi.org/10.1002/sia.5483
- (3) 横山 有太, 青柳 里果: Journal of Surface Analysis, Vol. 22, No. 1 (2015) pp. 37 - 49 https://doi.org/10.1384/jsa.22.37