広島県立総合技術研究所 水産海洋技術センター 事業報告 2022 (令和4) 年度

> 広島県立総合技術研究所 水産海洋技術センター

目	次
1 糸	組織及び職員・職員の異動
(1)	職員の配置
(2)	職員の異動(令和4年4月1日)・・・・・・・・・・1
2	式験研究等課題一覧······2
(1)	基盤研究 (共通・所長枠)
(2)	<u> 基盤研究(センター・成果移転促進) </u>
(3)	基盤研究(センター・事前研究)・・・・・・・・・・・・・・ 2
(4)	基盤研究(センター・探索研究)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
(5)	基盤研究(DX 研究技術支援強化) 2
(6)	事業課題
(7)	競争的資金研究課題
(8)	受託研究課題····································
3	式験研究結果の概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
(1)	基盤研究 (共通·所長枠)
	広島かき養殖の生産性向上に必要な抑制工程の技術革新に向けての基礎的研究4
(2)	基盤研究 (センター・成果移転促進) · · · · · · 6
	殻付かき非破壊品質評価技術の実用化6
	低塩分蓄養したマダイの品質向上技術開発6
(3)	1,13312
	マアナゴの成熟に関する研究7
(4)	基盤研究 (センター・探索研究)8
	かき採苗安定化に関する調査情報管理8
	ノロウイルス浄化に関する基盤的研究
(5)	
(5)	3D技術を用いたかき養殖種苗特性の定量化の検証
	JAXA 衛星観測情報を用いたかき養殖環境の広域推定
	画像判別による飼育水槽の異常検知システム開発・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
(6)	事業課題·······13
(0)	資源評価調査事業(主要魚種の資源評価・広域回遊資源動向把握調査) · · · · · · · · · · · · · · · · · · ·
	漁場環境・生態系保全向上対策事業(赤潮・貝毒漁場環境監視事業)・・・・・・15
	養殖衛生管理体制整備事業(水産業技術指導事業)・・・・・・・・・18
	水産業スマート化推進事業 (かき)
	水産業スマート化推進事業(資源)・・・・・・19
	夏かき産地育成事業 (夏かき品質対策事業)19
(7)	競争的資金研究課題
(• /	漁場環境改善推進事業のうち赤潮被害防止対策技術の開発・・・・・・・・・・20
(8)	受託研究課題····································
. /	環境負荷軽減型のカキ垂下式養殖の考案······21
	高水温下でのシロギス種苗生産に関する人材育成教材の開発・・・・・・・・21

冷水病耐性アユ生産技術の検討	·21
灰塚ダム湖産アユの再生産機構の解明に関する調査	.22
4 技術支援関連業務の概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	·23
(1) 試験研究等に関する企画調整	·23
(2) 技術支援関係·····	·24
(3) 広報活動	·25
(4) その他	·27
5 観測資料	.28
(1) 定時観測結果(令和2年1月~12月)	.28
(2) 漁場環境観測結果	.29

【注記】

課題によっては、秘密保持その他の観点から、研究成果等の具体的な内容の全部又は一部の記述を控えています。あらかじめ御了承ください。

(2022 (令和4年度))

1職員の配置・職員の異動

(1)職員の配置

センター長飯 田 悦 左次 長 (事務)横 手 克 尚次 長 (技術)柳 川 建

総務部長(兼) 横手克尚

主 査 松井邦幸 小早川真理

主任(エルダー)野間秀昭主事佐々木優東

 技術支援部長(兼)
 柳 川 建

 主任研究員
 米 山 弘 行

 主任研究員
 川 口 修

 水産研究部長
 若野
 真

 副部長
 工藤孝也

主任研究員 永井崇裕 御堂岡 あにせ 岩本有司

水 野 健一郎

研究員 東谷福太郎 加川真行 戸田竜哉

上原達亮 友井 千帆里

研究員(エルダー) 相田 聡

(2) 職員の異動(令和4年4月1日)

転入 戸田竜哉 (東部農林水産事務所から)

上 原 達 亮 (採用)

友 井 千帆里 (農林水産局水産課から)

転出 西井祥則(西部農林水産事務所へ)

黒 田 麻 美 (東部農林水産事務所へ)

村 田 憲 一 (退職)

2 試験研究等課題一覧

(1) 基盤研究(共通・所長枠)

課題名	予算 区分	実施期間	担当部等
広島かき養殖の生産性向上に必要な抑制工程の技術革 新に向けての基礎的研究 (稚貝の品質や抑制環境を評価 するための技術革新)	単県	R 3∼	水産研究部
(2)基盤研究(センター・成果移転促進)			
課 題 名	予算 区分	実施期間	担当部等
殻付かき非破壊品質評価技術の実用化	単県	R 2∼	水産研究部
低塩分畜養したマダイの品質向上技術開発	単県	R 3∼	水産研究部
(3) 基盤研究(センター・事前研究)			
課題名	予算 区分	実施期間	担当部等
マアナゴの成熟に関する研究	単県	R 2∼	水産研究部
(4)基盤研究(センター・探索研究)			
課題名	予算 区分	実施期間	担当部等
4課題(かき関係3課題、内水面関係1課題)	単県	R 4	水産研究部
(5)基盤研究(DX 研究技術支援強化)			
課題名	予算 区分	実施期間	担当部等
3課題(3D技術、JAXA衛星観測情報活用、画像 判別)	単県	R 4	水産研究部

(6)事業課題

課題名	予算 区分	実施期間	担当部等
資源評価調査事業 (主要魚種の資源評価・広域回遊資源動向把握調査)	国県 受託	H18∼	水産研究部総務部
漁場環境・生態系保全向上対策事業 (赤潮・貝毒漁場環境監視事業)	国県 受託	H23∼	水産研究部
養殖衛生管理体制整備事業 (水産業技術指導事業)	県 国補	H20∼	水産研究部 技術支援部
水産業スマート化推進事業(かき)	単県	R 3∼	水産研究部
水産業スマート化推進事業(資源)	単県	R 3∼	水産研究部
夏かき産地育成事業(夏かき品質対策事業)	県 国補	R 3∼	水産研究部

(7)競争的資金研究課題

課題	名	予算 区分	実施期間	担当部等
開発(有智	改善推進事業のうち赤潮被害防止対策技術の 『赤潮プランクトンの出現動態監視及び予察技 頼戸内海西部・豊後水道・土佐湾海域)	受託	H30∼	水産研究部

(8)受託研究課題

課題名	予算 区分	実施期間	担当部等
環境負荷軽減型のカキ垂下式養殖の考案	受託	R 4	水産研究部
高水温下でのシロギス種苗生産に関する人材育成教材 の開発	受託	R 4	水産研究部
冷水病耐性アユ生産技術の検討	受託	H25~	水産研究部
灰塚ダム湖産アユの再生産機構の解明に関する調査	受託	R 4	水産研究部

3 試験研究結果の概要

(1) 基盤研究(共通·所長枠)

広島かき養殖の生産性向上に必要な抑制工程の技術革新に向けての基礎的研究 (稚貝の品質や抑制環境を評価するための技術革新)

目 的

かき養殖の抑制工程(かきの成長を抑制することで、限られた漁場で養殖種苗を維持する工程)について、全体の生産性向上に資する科学的根拠に基づいた適切な養殖条件を設計するための基盤技術を確立する。

これまでの成果

- 1 種苗の初期生残率向上に係る評価法に関して、稚貝に病原体攻撃(稚貝に対し病原性を示す細菌を用いた培養液の注射や浸漬)を行う生物学的な手法が、評価手法として適切であることが明らかになった。
- 2 採苗連を撮影する条件を固定して画像を撮影することで、採苗連から種板を分解してサンプリン がすることなく、抑制状態を数値化できるようになり、抑制終了時における種苗の評価が可能となった。
- 3 県内の様々な漁場の抑制棚を特徴付ける干潟の地盤高や勾配、棚上面高さ等の地理情報を、設定 したルートを飛行し、自動撮影するドローンにより収集することが可能となった。また、水温や塩 分等のかきの成長や生残に関係深い環境情報を、ロガーを用いて長期に観測する方法を確立した。

実施方法

- 1 養殖業者が採苗した抑制状態の異なる複数群の稚貝を、3段階の病原菌濃度(10^{7.9}、10^{6.9}および 10^{5.9} CFU/mL)で攻撃し、5日後の死亡率から稚貝の抵抗力の強さを評価した。
- 2 県内の抑制漁場において、付着状態の異なる実験用稚貝を入手し、大きさや数の測定及び採苗連の画像撮影を行った。撮影した採苗連の全体画像を上・中・下の3つに区分し、画像処理によって各区分の種板の特徴を数値化することにより、採苗連の上下のばらつきを評価するための手法を検討した。

加えて、抑制漁場において、抑制終了時の採苗連の品質(採苗連の上下で稚貝の大きさや数が許容範囲に収まっているか否か)を目視判別により4段階に分け、各段階の採苗連(合計4種類)の画像を撮影した。その後、得られた画像を本研究により開発した手法で評価することで、目視と同程度の判別が可能かどうかを確認した。

- 3 県内の特徴的な抑制漁場で空撮可能なドローンの自動航行プログラムを完成させ、地理情報を収集した。空撮により得られた地理情報から、抑制漁場の利用実態(種板の余剰や利用率)を把握し、それぞれの抑制環境に応じた適切な管理方法を提案できる基盤の構築を検討した。
- 4 調査済みの抑制漁場の地理環境の特徴からタイプ分けの基準を決定し、抑制環境を特徴づける波当たり等の測定手法を決定した。

結 果

- 1 異なる抑制状態の稚貝で、半数の稚貝が死亡する菌濃度を比較すると、稚貝群間で100倍の差が みられた。抑制漁場において歩留まりが低い(死亡率が高い)稚貝は死亡率が高い傾向を示したこ とから、抑制漁場の稚貝の状態を反映しているものと考えられた。養殖業者が採苗した稚貝におい ても、病原菌を用いた攻撃試験で稚貝の抵抗力の強さを評価することが可能と考えられた。
- 2 採苗連の全体画像を上・中・下の3つに区分したのち、画像処理によって各区分の画像特性値を 取得することで、上下のばらつきを定量的に評価できる手法を開発した。

抑制漁場において、目視により判別された4段階のうち、最も状態の悪い段階(上下のばらつきが大きく、成長抑制がかかっていない状態)の採苗連を画像処理によって判別することができた。 これにより、抑制漁場で撮影した画像を用いて、採苗連の状態が評価できることを確認した。

3 県内の特徴的な抑制漁場において、ドローンの自動航行プログラムを完成させ、各地区において

空撮を実施し、抑制漁場へ稚貝搬入前(採苗前)の地理情報を収集した。また、抑制漁場の空撮情報から作成した地理情報から、抑制漁場における種板の収容力・余剰種苗量・棚の破損率(破損個所の総距離 / 抑制棚の総距離)の計測方法を確立した。

確立した計測方法を音戸地区で試行した結果、採苗終了時期に空撮画像から推定した抑制漁場の利用率は50%程度(約500万枚)であり、このうちの10%程度(約100万枚)が余剰種苗(昨年度以前に採苗した種苗の残り)であることが明らかになった。任意の抑制漁場における利用実態が把握可能となったことから、抑制漁場における適切な種苗管理方法(適した場所・抑制方法・移動のタイミング等)が検証可能な状態となった。

4 過去の環境データや漁業者へのヒアリングから、漁業者が着目している要因を整理し、県内の漁場の特徴量の幅を網羅するように設定した代表地点にて取得した、水温、波当たりに加えて、河川からの距離や底質(砂、岩)、海岸の形状(垂直護岸、自然海岸)、棚の高さ、稚貝の収容力の情報をタイプ分けの基準として決定した。これにより、タイプ別に稚貝の管理方法を提案するために必要な項目が整った。波当たりについては、ジャイロセンサー(HOBO製)を用いることで連続観測が可能となった。

担当者: 永井崇裕、岩本有司、水野健一郎、友井千帆里

(2) 基盤研究(センター・成果移転促進)

殼付かき非破壊品質評価技術の実用化

目 的

オイスターバーやカキ小屋・贈答品として扱われる「殻付かき」の需要が全国的に拡大する一方、可食部が見えない殻付かき商材は、不良品(水かき)混入によるクレーム問題や、広島かきブランドとしての品質保証の難しさなど、身入り品質評価に関する長年の問題が顕著化してきている。本課題では、殻付かきの身入り品質を、殻を開けることなく(非破壊)評価・判別できる技術の成果移転を目的とし、市場における不良品流通の低減・ブランド価値の担保による高付加価値化につなげる。

これまでの成果

- 1 様々な商品特性を持つ殻付きカキサンプルから非破壊情報と品質情報を取得し、殻付きカキの非破壊情報から身入り品質を推定するモデル(身入り推定モデル)を作成した。
- 2 生産ラインでの稼働を前提とした身入り推定モデルの入力・出力実行環境を整備し、デモ機が完成した。

担当者:水野健一郎、岩本有司、友井千帆里

低塩分畜養したマダイの品質向上技術開発

目 的

広島県で開発した低塩分蓄養技術は活魚流通において、高い生残率や高品質の維持を実現できることから、その有用性が評価されているものの、消費者にとっての有用性については不明瞭である。そこで、本技術の普及と消費者へのPRポイントを明らかにするため、県立広島大学と共同で低塩分蓄養によって生産されたマダイの呈味等に影響を与える、筋肉中のエキス成分を評価する。

担当者:御堂岡あにせ、上原達亮、東谷福太郎

(3) 基盤研究(センター・事前研究)

マアナゴの成熟に関する研究

目 的

天然資源が著しく減少しており、県内飲食業に対する供給が不足しているマアナゴについて、安定 した供給体制の構築に向けた放流及び養殖種苗の生産技術確立に向けて、人工催熟による親魚養成が 可能であるか確認する。

これまでの成果

- 1 メス親魚の催熟試験において、R 2年度は 23 尾中7尾が成熟し、そのうち5尾が排卵し、R 3 年度は 20 尾中 19 尾が成熟し、そのうち 15 尾が排卵した。
- 2 オス親魚の催熟試験において、R2年度は10尾中4尾が成熟し、R3年度は11尾中すべてが成熟し、精子を採取することができた。
- 3 18回の人工授精のうち1例で受精卵が得られた。

実施方法

- 1 供試魚
 - 県内の漁業者から親魚養成用としてマアナゴを購入し、催熟試験に供した。
- 2 メスの催熟

メスの親魚 20 尾を試験に供した。まず供試魚の体重を測定し、背鰭基部の筋肉にヒト絨毛性ゴナドトロピン(HCG)を 100IU/魚体重(kg)、またはウナギ組換え濾胞刺激ホルモン(rFSH)を 0.5 mg / 魚体重(kg)投与した。ホルモン投与は隔週で行い、試験期間中は水温を 10° Cに設定し、無給餌で飼育した。成熟が進んできた個体については、卵巣内の卵母細胞をカニュレーションによって採取し、顕微鏡で卵母細胞の成熟状況を確認した。卵母細胞の油球の融合が進み、数十個程度になった段階で、まず、最終成熟を加速させるために、HCG を 100IU/魚体重(kg)、または rFSH を 0.5 mg / 魚体重(kg)投与し、その翌日に、17 α 、20 β -ジヒドロキシ-4-プレグネン-3-オン(DHP)を 2 mg/魚体重(kg)投与することで、排卵誘導を行った。DHP を投与した後は、水温を 12° Cに 昇温し、引き続き無給時で飼育した。

3 オスの催熟

オスの親魚8尾を試験に供した。メスと同様に、供試魚の体重を測定し、背鰭基部の筋肉に HCG を 100IU/魚体重 (kg) 投与した。ホルモン投与は隔週で行った。試験期間中は、水温を 10℃に設定し、無給餌で飼育した。成熟の度合いについては、ホルモン投与のタイミングで腹部圧迫を行い、精子が漏れ出す状態の差異によって確認した。

4 人工授精

人工精漿で 20 倍に希釈した精子を、海水中に分散させた排卵卵を入れたビーカーに加え、静かに撹拌し、1分間静置した。また、別の方法として人工精漿で 20 倍に希釈した精子を、排卵卵を入れたボウルに加え、その後静かに海水を加えて、1分間静置した。

結 果

- 1 HCG で催熟を行ったメスは18尾中16尾が成熟し、そのうち10尾が排卵まで至った。rFSHで催熟を行ったメスは2尾すべてが成熟し、排卵まで至った。オスは8尾中すべてが成熟し、継続的に採精することができた。
- 2 成熟したメス親魚から得られた排卵卵と成熟したオス親魚から採取した精子を用いて人工授精を 行った。HCG で催熟を行ったメスの排卵卵を用いた 10 回の人工授精のうち4 例で受精卵を得られ た。rFSH で催熟を行ったメスの排卵卵を用いた 2 回の人工授精では受精卵は得られなかった。受 精卵を得られた 4 例のうちいずれも孵化までは至らなかった。

担当者: 東谷福太郎、御堂岡あにせ、上原達亮

(4) 基盤研究(センター・探索研究)

かき採苗安定化に関する調査情報管理

目 的

カキ養殖の採苗安定化を実現する上で、過去の調査情報を活用した情報提供の質の向上や対策考案、効果検証を行う必要がある。そのため、かき生産者団体および広島市を中心とした県内複数機関が行っている過去のかき幼生調査情報および新たに得られる情報が、同一のフォーマットで蓄積される情報基盤をR3年度に整備した。R4年度は情報基盤のデータ出力および海洋観測情報の入出力を改良し、利用者が活用しやすいシステムへと改善する。

担当者:水野健一郎、岩本有司

ノロウイルス浄化に関する基盤的研究

目 的

ノロウイルスで汚染されたカキの生食による食中毒が、しばしば問題となっている。対策として、 カキを人工的に浄化して、蓄積されたウイルス量を低減させることが考えられるが、ノロウイルスは 培養が困難であるため、浄化方法の評価に用いる標準化されたウイルス汚染カキの確保が難しい状況 にある。

そこで、カキ由来のノロウイルス遺伝子を基にVLP(ウイルス様粒子)を作製し、それを用いて標準化した擬似汚染カキによる浄化方法の評価手法を確立する。

担当者:永井崇裕、東谷福太郎

新たな特徴を持ったマガキの育種(シカメ・ケガキ)

目 的

水産海洋技術センターで保有するマガキの系統育種を行うと共に、この技術を応用して、新たな品種(シカメガキ・ケガキ)の種苗生産を行うことにより、新規系統を確立する。

背 景

- 1 食の多様化によるニーズに対応するため、既存のむき身かき以外の新たな商材が求められている。
- 2 将来の国内市場の縮小に対応するため、輸出品目として優位性のある商材が求められている。
- 3 シカメガキ、ケガキについては、種苗生産等の人工飼育に関する知見が不足している。

実施方法

- 1 当所で継代しているマガキの種苗生産を行った。
- 2 マガキの種苗生産方法に準じて、シカメガキ及びケガキの種苗生産を行った。

結 果

- 1 合計 10 回の種苗生産を行い、マガキ (10 系統)、シカメガキ (2 系統)、ケガキ (2 系統) の稚 貝 (設高約 1 cm) を約 3 万個体得た。
- 2 得られた稚貝は、次年度の親貝に供するため、海面筏に沖出しして、継続飼育を行った。

担当者:岩本有司、水野健一郎、永井崇裕、友井千帆里

冷水病自然感染による耐病性評価試験

目 的

広島県産人工アユの冷水病耐病性を、河川水を用いた養殖場で冷水病に自然感染させることで評価する。

背 景

- 1 アユの冷水病は 1993 年に県内河川で最初に確認されてから毎年発生し、病原型の異なる原因菌の存在や、原因菌の高病原化も明らかにされている。
- 2 一般社団法人広島県栽培漁業協会においては、冷水病耐病性を高めたアユ複数系統を生産し、中間育成された後に県内各地の河川に放流されている。
- 3 原因菌の病原性の変化が毎年確認されていることから、河川水を用いた自然感染でこれらの人工 アユの冷水病耐病性の評価を行う必要がある。

実施方法

- 1 2022 年5月から6月にかけて、広島県栽培漁業協会で量産されている2系統(宮崎系および新 湖産交配系)のアユの飼育試験を県内の養殖場で行った。飼育試験には河川水が導入された屋外池 を用いた。
- 2 供試魚は飼育前に鰭切標識を施し、2系統を同数ずつ混合してから屋外池に収容した。実験には同じ条件の2池を設定した(1区および2区)。死亡魚は毎日冷凍保存し、センターに持ち帰ってから、系統ごとの死亡数を計数した。冷水病の発生は死亡魚の症状や、死亡魚からの菌分離の状況から確認した。

結 果

- 1 冷水病の発生は5月中旬から6月中旬に確認され、5月14日から6月20日までの死亡数から累積死亡率を算出した。
- 2 累積死亡率は、1区の宮崎系が12.6%、新湖産交配系が20.9%、2区の宮崎系が15.6%、新湖産交配系が21.1%となり、宮崎系の死亡率は新湖産交配系の死亡率よりも2区ともに有意に低くなった(P<0.05)。
- 3 2021 年の自然感染実験では、宮崎系の死亡率が11.3%、新湖産交配系の死亡率が17.3%であり、2022 年の死亡率よりやや低かったが、両系統の冷水病耐病性は維持されていると考えられた。

担当者:永井崇裕、東谷福太郎

(5) 基盤研究 (DX 研究技術支援強化)

3 D技術を用いたかき養殖種苗特性の定量化の検証

目 的

デジタルカメラで撮影した画像から3D点群データを作成することで、ホタテ盤上(以下、種板)に付着するかき稚貝の状態(成長による殻の立ち上がり等)が定量化可能かどうかを検証する。

実施方法

1 かき稚貝の画像撮影

水産海洋技術センターで種苗生産したかき稚貝をホタテ盤上に付着させ、付着直後(10/13撮影)及び育成後(12/14撮影)のかき稚貝の画像を撮影した。背景には画像の位置決めに必要なGCP(座標の基準となる点)を記入した新聞紙を用い、天頂部3枚3列(合計9枚)、外周360度16枚×上下2列(合計36枚)をデジタル一眼レフで撮影した。

2 撮影画像の3 D化及び解析

1で撮影した画像から、SfM 解析ソフト (Agisoft Metashape Professional) を用いて、撮影画像の3D点群データを作成した。3D点群データを csv 形式でエクスポートしたのち、QGIS(ver.3.16.11)を用いて新聞の皺などの情報を除いたかき稚貝の凹凸の定量化を試みた。

結 果

SfM 解析ソフトを用いて、付着直後及び育成後それぞれの3D点群データおよび立体画像を取得した。得られた3D点群データをQGISにインポートしたのち、閾値処理で新聞の皺などの微細な凹凸情報の除去を試みたが、全ての背景情報を除去することができず、ホタテ盤及びかき稚貝のみの凹凸情報を取り出すには至らなかった。今後は画像撮影の背景に凹凸がないものを使用することにより、データ処理の簡素化を図る必要がある。

担当者:岩本有司、水野健一郎

JAXA 衛星観測情報を用いたかき養殖環境の広域推定

目 的

マガキ養殖において、水温や餌料環境等の養殖海域の環境情報を把握することは、カキ養殖の身入り促進やへい死対策において重要となる。そこで、国立研究開発法人宇宙航空研究開発機構(Japan Aerospace Exploration Agency, JAXA)と連携し、気候変動観測衛星「しきさい」(以下 観測衛星)が提供する環境データと現場海域での実測値とを統計的に比較し、衛星情報によるかき養殖漁場の環境推定精度を明らかにする。

成 果

水産海洋技術センターで定期的に定点調査を行っている県内 19 地点の水温・クロロフィルデータ(現場実測値)と観測衛星から得られた水温・クロロフィルの推定値(観測衛星推定値)の比較を、 JAXA と連携して行ったところ、水温については R^2 =0.99 (N=105)であり、養殖海域の水温差を把握できるほどの相関が確認された。クロロフィルについては、 R^2 =0.50 (N=321) と相関が得られたものの、極沿岸域においては十分な相関が得られないなど、地点による推定精度の変動が大きかった。 現状の計測方法である蛍光式クロロフィルセンサーによるクロロフィル a量と分析値(アセトン抽出法)との相関 (R^2 =0.77) を考慮すると、現場測定データを相対的に補足する程度の指標(餌が多い、少ない)としては活用可能であると考えられた。

担当者:水野健一郎、岩本有司

画像判別による飼育水槽の異常検知システム開発

目 的

陸上養殖において、飼育水槽内の曝気や注水の停止といった異常は飼育魚の全滅を招く、致命的な事故につながることが多い。このような飼育事故防止を目的とし、水槽の異常をカメラ撮影から得た映像により判別し、その状況を遠隔地から監視するシステムを開発する。

担当者:東谷福太郎、工藤孝也

(6) 事業課題

資源評価調査事業(主要魚種の資源評価・広域回遊資源動向把握調査)

目 的

従来の広域回遊魚5種(カタクチイワシ、マダイ、ヒラメ、トラフグ、サワラ)に加えて、令和4年度からはサルエビの資源評価調査を開始した。これらの魚種の漁獲状況、水揚状況、漁獲物の測定結果および卵稚仔調査の結果をとりまとめて、国の資源評価情報システム(FRESCO)に登録する。都道府県の調査報告に基づいて、国の資源研究所が毎年魚種、系群ごとに資源評価を実施して、これら科学的根拠に基づいた資源管理型漁業を推進していく。

これまでの成果

上記6魚種の生物情報収集調査、漁獲量調査、標本船調査及びカタクチイワシ卵稚仔調査を実施して、 得られたデータを FRESCO システムに登録した。また4月~11 月のカタクチイワシ卵稚仔調査結果 については県漁連を通じて漁業関係者に情報提供した。

実施方法

1 カタクチイワシ卵稚仔調査

17 定点(安芸灘 12 定点、燧灘 5 定点)、4~11 月、毎月1回

2 漁獲状況等調査

標本船調査

カタクチイワシ: 阿多田島及び倉橋島漁協(二そういわし船びき網)各1統、6~12月

マダイ: 吉和漁協(ごち網) 1 隻、周年

サワラ : 阿賀及び三原市漁協(さわら流し刺し網)各々8隻及び3隻、4~6月

サルエビ: 千年漁協及び尾道漁協(小型底びき網)各1隻、8月~3月

市場(水揚量)調査

ヒラメ・マダイ:阿賀漁協市場、周年

トラフグ:田島漁協(定置網)4~6月、

田尻あんずの里漁協(定置網)及び尾道市場、各周年

漁獲物測定調査

カタクチイワシ:6~12月、ヒラメ:4~6月、トラフグ:9~12月、サルエビ:7~10月

共販量調査(安芸灘および修業) カタクチイワシ:6~3月

結 果

1 カタクチイワシ卵稚仔調査

安芸灘海域では、卵稚仔の出現は4月~11月の全ての月で確認された。調査期間(4~11月)中に調査定点(10定点)で出現した卵の密度は317.4個/m³(前年比109.1%、平年比199.4%)で、稚仔の密度は24.8 尾/m³(前年比117.2%、平年比178.2%)で、どちらも多くみられた。

燧難海域での卵稚仔の出現は、4 月~11 月までの調査月のうち、5~9月に確認された。調査期間中に調査定点(2 定点)で出現した卵数の密度は7.03 個/ m^3 (前年比4.4%、平年比33.6%)で、稚仔の密度は、7.9 尾/ m^3 (前年比4.3%、平年比7.9%)でどちらも極めて少なかった。

2 漁獲状況等調査

安芸灘海域のカタクチイワシについては、煮干しサイズを中心に漁獲する阿多田島漁協の標本船の 全漁獲量は1,528.7t(前年比93.4%、平年比92.3%)、チリメンサイズを中心に漁獲する倉橋島漁協 の標本船の全漁獲量は60.2t(前年比104.7%、平年比101.7%)であった。

燧灘海域で漁獲されたカタクチイワシの共販出荷量は、チリメン 18.3t、カエリ 3.5t、小羽 9.0kg であった。

燧難海域のカタクチイワシについては、広島・香川・愛媛の3県共同で瀬戸内海系群(燧灘)として、カタクチイワシ春期発生群資源量の推定を、毎年コホート解析で実施している。今年の初期資源 尾数は52.5 億尾と計算され、昨年(57.8 億尾)よりも減少した。瀬戸内海系群全体の動向や、漁獲実績などから総合的に判断して、資源水準は昨年同様に低位、動向は減少と評価された。

マダイについて、阿賀市場への4~12月の水揚げ尾数は4,748尾で、前年比50.7%、平年比58.3%

と大幅な減少となった。平成 30 年から令和 3 年までの動向では、特大以外の銘柄についてはほぼ横ばいで、特大についてのみ減少傾向がみられていたが、令和 4 年については全ての銘柄が減少となった。

ヒラメについて、阿賀市場への年間総水揚尾数は、269 尾(前年比63.0%、平年比68.0%)、銘柄別内訳は、大179 尾、中75 尾、小15 尾であった。

トラフグについて、田島漁協(親魚サイズの大型魚を中心に漁獲する)では、出漁統数が平成 30 年当時は 38 統あったものが令和 3 年以降は 19 統まで減少したこともあり、今年度の $4\sim6$ 月の水 揚げ量は 31.9kg(平年比 58.3%)で、平成 30 年以降は 6 月の水揚げがみられなくなっている。 1 統当たりの水揚げ量について、平成 31 年当時は 0.20kg で令和 2 年は 0.21kg と横ばいであったが、令和 4 年はミズクラゲの出現が多かったこともあって 0.17kg と減少した。

また田尻あんずの里漁協(当歳魚を中心に漁獲する)の $1\sim12$ 月の水揚量調査については、令和 4年の4月以降はミズクラゲの多数入網によって操業できない状況となり、操業が再開されたのが 10月以降ということもあって、10.0kg(平年比33.5%、前年比46.5%)の水揚げにとどまった。

サワラについて、4~6月に広島市中央卸売市場に水揚げされたサワラ、サゴシの漁獲量は約81tで前年比101%、10か年平均値の約2倍の漁獲量であった。ただし、サゴシの漁獲量は約0.3tで、前年比47%と少なかった。

安芸灘海域で操業する阿賀漁協のさわら流し刺し網については、出漁した実績のある全漁業者 20 統のうち8統の操業日誌を調査した。漁期は例年どおり4月11日から開始され、5月初頭までは過去5年間で4~5番目の漁獲量であったがその後急増し、5月中旬には過去5年間で2番目の漁獲量となった。その後増加は緩やかとなり、漁期末期には過去5年間で3番目の漁獲量となって6月末に終漁した。

燧灘海域で操業する三原市漁協のさわら流し刺し網については、漁期開始が4月20日、終漁は6月10日であった。漁獲状況については、総漁獲量は9.1 t(前年比175%)で、平成16年からの記録では過去3番目に多かった。

※ 平年値は卵稚仔については平成 24 年~令和 3 年の平均値、その他は直近の 5 年間(平成 30 年~ 令和 4 年)の平均値を用いた。

担当:加川真行、戸田竜哉、相田 聡

漁場環境・生態系保全向上対策事業(赤潮・貝毒漁場環境監視事業)

目 的

赤潮による漁業被害の未然防止や、貝毒による水産物の食品としての安全確保を図るために、必要な環境調査を実施し、情報の伝達を行う。

これまでの成果

- 1 広島県沿岸に発生する赤潮について、種ごとに発生する、おおよその時期を明らかにし、過去に観測した、赤潮原因プランクトンの出現密度や環境要因をデータベース化した。
- 2 広島湾で発生する麻痺性貝毒は、Alexandrium catenella (旧称 Alexandrium tamarense) に起因し、その増殖時期は、水温が $11\sim16$ Cとなる $3\sim5$ 月であること、初期発生海域の一つが呉港周辺であることを明らかにした。
- 3 昭和46年度以降の定期観測結果をデータベース化し、過去30年間の観測結果を取りまとめた。
- 4 30 年間の月別平均値を用いた水質に関する調査項目の平年値について、使用するデータ期間を平成23年度に更新し、それまでの1972年~2001年から1981年~2010年のデータに更新した。また、迅速な情報発信ができるよう、漁場環境ファックス速報のフォームを新たに作成した。

実施方法

- 1 調查期間:令和4年4月~令和5年3月
- 2 調査測点:西部海域 赤潮 11 測定点及び臨時測定点、貝毒 12 測定点(本定点 7 + 補助定点 5)中東部海域 赤潮 8 測定点及び臨時測定点、貝毒 4 測定点及び臨時測定点
- 3 調査項目:気象、海象、水質(水温、塩分、栄養塩、クロロフィル)、プランクトン
- 4 その他の実施項目:観測結果の関係機関への提供

結 果

令和4年1月から12月の結果を記載

1 水質環境

1-1 水温

西部では、表層は7月が甚だ高めであったほかは、平年並みからかなり高めで推移した。底層は10月が甚だ高めであったほかは、やや低めからかなり高めで推移した。中部では、表層は8、10、12月が甚だ高めであったほかは、やや低めからかなり高めで推移した。底層は9、10、12月が甚だ高めであったほかは、やや低めからかなり高めで推移した。東部では、表層、底層とも7月、10月が甚だ高めであったほかは、かなり低めからかなり高めで推移した。

1-2 D I N

西部では、表層は8、10月が甚だ低めであったほかは、かなり低めから平年並みで推移した。 底層は1、3、6月が甚だ低めであったほかは、やや低めから平年並みで推移した。中部では、表層は期間を通じてかなり低めから平年並みで推移した。底層は7月が甚だ低めであったほかは、やや低めから平年並みで推移した。東部では、表層は7月が甚だ低めであったほかは、やや低めからやや高めで推移した。底層は、期間を通じてやや低めからかなり高めで推移した。

1-3 D I P

西部では、表層は8、10、12月が甚だ低めであったほかは、やや低めから平年並みで推移した。 底層は、1、2月が甚だ低めであったほかは、かなり低めからやや高めで推移した。中部では、表層は2月が甚だ低めであったほかは、かなり低めからやや高めで推移した。底層は、2月が甚だ低めであったほかは、やや低めからやや高めで推移した。東部では、表層は2月が甚だ低めであったほかは、やや低めからかなり高めで推移した。底層は2、5、12月が甚だ低めであったほかは、やや低めからかなり高めで推移した。

偏差の目安	標準偏差(σ)	発生頻度
「平年並み」	0.6σ未満	およそ2年に1回
[\tag{5}_]	0.6σ~1.3σ	〃 3年に1回
「かなり」	1.3σ~2.0σ	11 7年に1回
「 <u>甚</u> だ」	2.00以上	11 22年に1回

平年偏差の大きさの度合の基準

(標準偏差 σ は 1981 年度から 2010 年度までの各月データを用いて算出)

2 有害有毒プランクトンの発生状況

2-1 Karenia mikimotoi

東部海域では7月4日に最高細胞密度 4cells/mL 確認された。その後7月 20 日に 104cells/ml、8月2日に1,570cells/ml 確認されたことから、注意報が発令された。さらに、8月8日には調査期間中の最高細胞密度である 25,200cells/ml が確認され、警報が発令された。その後8月 23 日の調査では確認されず、以降は1cells/ml を超えて確認されることはなかった。

西部海域では9月1日に 1cell/ml 確認され、9月 15 日には調査期間中の最高細胞密度である 7cells/ml が確認された。しかしその後 1cell/ml を超えて確認されることはなかった。

2-2 Chattonella antiqua、C. marina および C. ovata

東部海域では5月26日に最高細胞密度1 cell/mL 確認された。その後、6月23日には65cells/ml が確認され、注意報が発令された。さらに7月7日には調査期間中の最高細胞密度1,817cells/ml が確認され警報が発令された。その後、7月20日に6 cells/ml まで低下し、以降9月まで一桁の細胞密度で推移した。10月以降は1 cell/ml を超えて確認されることはなかった。

西部海域では6月 16日から11月 1日まで期間を通じて確認され、最高細胞密度は7月 1日及び9月 1日の7cells/ml であった。

2-3 Heterocapsa circularisquama

期間を通じて確認されなかった。

2-4 Heterosigma akashiwo

東部海域では6月~10月に確認され、最高細胞密度は6月2日の28cells/mLであった。

西部海域では6月1日に156cells/ml が確認された。その後は8月までは6cells/ml 以下で推移したが、9月1日に調査期間中の最高細胞密度 10,233cells/ml が確認された。以降は1cell/ml を超えて確認されることはなかった。

2-5 Cochlodinium polykrikoides

東部海域では、10月4日に1定点で0.06 cells/mL 確認されたのみであった。

西部海域では、8月15日24cells/mlが確認された。その後8月23日に32cells/ml確認されたのち、9月1日に調査期間中の最高細胞密度425cells/mlが確認され、赤潮注意報が発令された。以降は1cell/mlを超えて確認されることはなかった。

2-6 Akashiwo sanguinea

東部海域では7月、9月を除いて確認された。西部海域では6月を除いてほぼ周年確認された。いずれの海域でも赤潮を形成するほどの増殖は認められなかった。

2-7*Alexandriumu* spp.

調査定点を図9に示した。東部海域では、At complex は1月、2月、4月~7月、 11月に確認され、最高細胞密度は4月の 4ells/mL であった。

西部海域では、At complex が 1 月~5月と 11 月に確認された。最高細胞密度は 11 月 1 日の 0.08cells/mL であった。

2-8 Gymnodinium catenatum

西部海域で11月に0.08cells/mL確認された。

2-9 Dinophysis 属 (D. fortii、D. acuminata、D. caudata、D. rotundata、他)

調査定点を図9に示した。Dinophysis 属は、東部海域では6月、7月を除いて確認されている。西部海域ではほぼ周年確認されている。11月までの最高細胞密度は東部海域で2 cells/mL、西部海域で1 cells/mLであった。

3 観測結果の関係機関への提供

海洋観測結果を調査ごとに、随時、関係機関に発信した。

担当者:加川真行、上原達亮、戸田竜哉、相田 聡

養殖衛生管理体制整備事業(水産業技術指導事業)

目 的

養殖魚類防疫体制の総合的推進を図るとともに、水産用医薬品の適正指導や適正な養殖管理の指導等を行って養殖経営の安定を図る。

これまでの成果

防疫会議及び魚病講習会の開催、魚病発生時の緊急対策を実施して、魚病の蔓延防止に努めた。また、 食品としての安全性を確保するため、水産用医薬品の適正指導を実施してきた。更に近年、新型伝染病 が多発し被害が大きくなっているため、新しい診断技術を導入し、蔓延防止のため検査を実施した。ま た、予防対策を講じ、これらを実施するために養殖業者と共同して活動してきた。

実施方法

- 1 健康診断の実施:養殖業者に対して指導を行い、魚病の発生防止に努める。
- 2 一般魚病対応の実施
- 3 各種防疫関連会議での情報収集

結 果

- 1 広島県栽培漁業センターにおける種苗生産について、依頼に基づき疾病検査及び防疫指導を実施した。
- 2 魚病発生状況
- (1)海面

合計2件の魚病診断を行った(表1)。

表1 令和4年度月別魚病診断状況(海面)

		令和4年 令和5年				年						
魚種	診断	4月	5月	6月	7月	8月	9月	10月 11月 12	月1月	2月	3月	合計
クロアワビ	ビブリオ病							1				1
マダイ	ビブリオ病				1							1

(2) 内水面

合計27件の魚病診断を行った(表2)。

表2 令和4年度月別魚病診断状況(内水面)

					ŕ	7和4	年				令和	15年		
魚種	診断	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	合計
	エドワジエラ症				1	1 2	2							3
	異型細胞性鰓病						1							1
アユ	非感染性スレ症												1	1
	ビブリオ病								1			1		2
	冷水病		3											3
	ウイルス性浮腫症			1										1
ニシキゴイ	運動性エロモナス症						1	1			1		1	4
	不明	1	1	3	3 1									6
カマツカなど	水質事故							1						1
ヤマメ	IHN		1											1
7.47	生理障害									1				1
アマゴ	せっそう病			1					1					2
7 4 7	不明		1											1

3 各種防疫関連会議での情報収集

令和4年度は第36回近畿中国四国ブロック内水面魚類防疫検討会、令和4年度瀬戸内海・四国ブロック魚病検討会、令和4年度全国養殖衛生推進会議に参加し、最新の情報を収集した。

担当者: 東谷福太郎、御堂岡あにせ、上原達亮、永井崇裕

水産業スマート化推進事業(かき)

目 的

デジタル技術の活用によりかき養殖の生産安定化を目指す、水産業スマート化推進事業(農林水産局水産課事業 R3~)において、データ収集システムの構築やデータ活用の実証を科学的な視点から支援する。

担当者:水野健一郎、永井崇裕、岩本有司、友井千帆里、若野 真

水産業スマート化推進事業(資源)

目 的

令和4年度7月からの実施が予定されている広島県東部海域における海底耕うん事業に先立ち、当該事業がもたらす海水中への栄養塩添加効果を科学的な視点から支援する。

担当者:戸田竜哉、御堂岡あにせ、工藤孝也

夏かき産地育成事業(夏かき品質対策事業)

目 的

県東部地区にて実施される夏かき産地育成事業(農林水産局水産課事業R3~)において、新たなバイテク種苗で生産された三倍体かきの試験生産(夏かき品質対策事業)が行われる。試験生産される三倍体かきの出荷時の倍化率や身入り品質を明らかにすることで、東部海域に適した生産体制の確立に向けた取り組みを支援する。

担当者:水野健一郎、永井崇裕、岩本有司、友井千帆里、若野 真

(7) 競争的資金研究課題

漁場環境改善推進事業のうち赤潮被害防止対策技術の開発

有害赤潮プランクトンの出現動態監視及び予察技術開発②瀬戸内海西部・豊後水道・土佐湾海域

月 的

瀬戸内海西部・豊後水道海域・土佐湾海域において山口、福岡、大分、愛媛、高知、広島の6県が連携して、有害赤潮プランクトンの発生状況及び海洋環境を監視するとともに、既存データの解析、高頻度観測によるモデル構築、培養試験等によって、当該海域における有害赤潮の発生シナリオを構築し、赤潮発生予察や漁業被害軽減に資することを目的とする。

これまでの成果

- 1 Karenia mikimotoi 初認日(1細胞確認日)と、発生規模(最高細胞密度)に相関が認められ、 初認日が早い年は、赤潮が大規模化する傾向がある可能性が示唆された。
- 2 判別分析の遡り解析では、解析期間を変えると判別率が下がる項目があった。一方、解析期間の変化に関わらず、*K. mikimotoi* 赤潮の発生、非発生を反映する環境項目として4月の平均気温が確認された。
- 3 K. mikimotoi 赤潮の発生規模に関与する環境条件については、特に5月の表層と5m層のDIP 濃度及び合計日照時間が、いずれも低いことが、大規模発生に繋がる条件として抽出された。
- 4 *K. mikimotoi* 赤潮の細胞密度がピークに達する前後の環気象・海象データを比較した結果、*K. mikimotoi* 赤潮終息には表層水温の上昇と最大風速の低下が関与していることが示唆された。

実施方法

1 モニタリング調査

調査期間:令和4年6月~9月

調査定点:赤潮7定点

調査項目:水温、塩分、栄養塩、クロロフィルa、DO、有害有毒プランクトン

2 高感度監視調査

調査期間:令和4年4月~6月、令和5年2月

調査定点:赤潮1定点

調査項目:水温、塩分、栄養塩、クロロフィルa、DO、有害有毒プランクトン(100 倍濃縮検鏡)

3 既存データの解析 (K. mikimotoi 赤潮発生の短期的動態について)

6 県の共通方針に基づき、 $1992\sim2021$ 年の間で、K. mikimotoi が 100 cells/mL 確認日から 1,000 cells/mL 確認日までの期間に影響する環境因子を、一般化線形モデルを用いた解析により抽出した。

4 既存データの解析 (H29年度に提唱された赤潮予察技術の検証) 6県の共通方針に基づき、従来の予察技術による広島湾の今年度の予察結果について検証した。

結 果

1 モニタリング調査

広島湾では、K. mikimotoiは9月15日に、最高細胞密度7cells/ml確認された。

2 高感度監視調査

広島湾では、K. mikimotoi は調査期間中、100 倍濃縮検鏡では全く検出されなかった。

- 3 既存データの解析 (K. mikimotoi 赤潮発生の短期的動態について) 影響する環境因子として、平均気温および合計降水量の2項目が抽出された。100cells/mL 到達 日以降、平均気温が高い場合は赤潮発生までの期間が短くなる傾向があった。
- 4 既存データの解析(赤潮予察技術の検証) 広島湾の今年度の予察結果は「発生年」であったが、 *K. mikimotoi* 赤潮は発生せず、予察は的中しなかった。

担当者:加川真行、上原達亮、相田 聡

(8) 受託研究課題

事業名 環境負荷軽減型のカキ垂下式養殖の考案

実施方法

令和3年度までの取り組みにより、現行の筏垂下式養殖法で発生する食害と落ちかきを防ぐため、種板を1枚ずつ専用の養殖かご(Type1)内に収容する養殖方法を考案した。この方法を運用した結果、収穫時の作業性が悪く、実養殖への適用には課題が残った。そこで新たに、作業性の改善が可能となる現行の垂下連全体を覆うような筒形のかご(Type2)を考案した。

受託研究において、Type2 を運用した場合のかきの成長への影響、落ちかきの回収状況、食害防除効果を調査した。収穫時期における食害防除の効果や、かごに収容することによるかきの成長性への影響については Type1 を用いて調査した。

担当者: 友井千帆里

事業名 高水温下でのシロギス種苗生産に関する人材育成教材の開発

実施方法

高水温環境下におけるシロギスの種苗生産を実用化するために、その課題を整理した。また種苗生産現場の技術力向上を目的として、種苗生産業務に従事する技術者が一般的に習得すべき知識と技能を項目別に分けた動画教材を開発した。

担当者:御堂岡あにせ、東谷福太郎、上原達亮

事業名 冷水病耐性アユ生産技術の検討

実施方法

友釣り、投網及びほうろく網を対象に2つの新湖産交配系人工種苗(以下、新湖交系 A 及びB)と既存の宮崎系人工種苗(以下、宮崎系)を河川に放流し、両系統の漁獲特性を比較した。

【調査に使用した人工種苗アユの由来】

新湖交系 A:新湖交系の雌と宮崎系の雄を交配した種苗。

新湖交系 B: 琵琶湖産人工種苗の雌と新湖交系の雄を交配した種苗。

宮崎系 : 宮崎系の雌雄の交配した種苗。

結果の概要

放流された3つの種苗の漁獲尾数は、いずれの漁法でも差は認められなかった。このことから、3系統はほぼ同等の漁獲特性を有すると推定された。

担当者:工藤孝也、永井崇裕、戸田竜哉

事業名 灰塚ダム湖産アユの再生産機構の解明に関する調査

実施方法

灰塚ダム湖から遡上する天然アユは地域資源として放流種苗や加工食品等に利用されている。しかし、近年放流種苗として利用されていた早生まれ群のアユが減少していることが問題になっている。これまでの調査から早生まれ群は、流入河川である田総川で産卵した親魚に由来することが分かっており、前述の現象は河川内での親魚数の減少や産卵床の減少によるものと推察される。そこで、本研究では田総川内の天然産卵床を探索するともに、仔魚の流下調査を実施し、現在の田総川内の産卵場の分布とその利用状況を把握し、早生まれ群の資源回復に向けた基礎的知見を収集する。

結果の概要

2022 年に採捕された遡上アユのふ化月を推定したところ、2021 年 10 月にふ化した個体が全体の 60%程度を占めていた。このことから本年の遡上アユは、近年減少傾向にあった早生まれの河川由来の個体が中心であったと推定された。

流下仔魚調査では、9月下旬頃から流下仔魚の密度が高くなり始め、10月中旬にピークを迎え、11月初旬には低下した。1日あたりの流下仔魚密度のピークは20時頃だった。また、産卵床は、調査場所から上流域まで広範囲に存在しているのではなく、比較的狭い範囲に集中して分布している可能性が示唆された。

アユの産卵行動および産着卵の観察から田総川の産卵場は3か所確認された。このうち最も大規模だと推察された産卵場の河床は、ほとんどが礫で占められていた。

担当者:戸田竜哉、工藤孝也

4 技術支援関連業務の概要

(1) 試験研究等に関する企画調整

ア 受託研究

契約の相手方	件数
漁業関係団体	2件
民間企業	2件
その他協議会等団体	1件

イ 共同研究

契約の相手方	件数
大学等	1件

ウ 知的財産権の管理(特許等出願状況)

	特許の名称	出願日	登録状況等	共同出願者 (県単独/共同)
	超音波処理による養殖魚の病気を予防 し、感染を防止する方法	H18年2月	特許登録 H24年1月27日	豊国工業㈱
	生分解性アマモ苗床シートおよびアマモ 場の修復・造成・保全方法	H18年9月	特許登録 H24年3月16日 権利消滅 H28年3月16日	FE コンサルタント(株) 多機能フィルター(株)
特	海水魚を延命および/または外傷回復方 法ならびにこの方法で処理した海水魚	H23年3月	特許登録 H27 年 9 月 11 日	県単独
許	海水魚を延命および/または外傷回復方 法で処理した海水魚	H27年7月	特許登録 H29年3月10日	県単独
#1	魚類の保存方法	H28年4月	公開中 H28年12月28日	県立広島大学
	水生生物の体内に有用成分を取り込ませる方法、およびそれを用いて得られた水 生生物	H25年3月	特許登録 H28 年 9 月 30 日	県単独
	品質評価、教師データ、品質評価処理プログラムおよび品質評価方法	R2年3月	未公開	県単独
商標	フォアグラハギ	H26年1月	商標登録 H26 年 7 月 18 日	県単独

(2) 技術支援関係

ア 講師等の派遣(延べ人数)

• 117-1-17-17-17-17-17-17-17-17-17-17-17-1									
項目	依頼者								
項目	国関係	県関係	市関係	漁業団体	企業等	計			
かき種苗生産・養殖				1		1			
魚類種苗生産・養殖				1		1			
魚類防疫対策		2				2			
環境保全・水質・赤潮	1	1				2			
水産全般・その他									
計	1	3		2		6			

イ 受入研修

研 修 内 容	期間	研修受講者 所属、人数
水産用ワクチン使用研修	11月30日	漁業者 1名

ウ 技術的課題解決支援事業 (ギカジ)

課題数(件数)				依頼者数			技術支援料 (円)					
22 件				17者			2, 285, 805					
	課題分類											
貝類	魚類	漁場環	環境	内水面	海水利用	餌料生	物 付着		 手生物	その作	也	計
7	4	2			1	1		1		6		22 件
	依頼者分類											
大学	大学県市町漁		業関係	企業	N	NPO		但	国人		計	
2	2		5	9		•	·	·	1		17者	

工 設備機器利用 (件数)

名称		利用者										
71 1/1	大学	県関係	漁業者	企業等	計	利用料(円)	手数料(円)					
倒立顕微鏡				3	3	6, 800	3, 800					
高速冷却 遠心分離機	3				3	19, 800						
凍結シワロトーム				3	3	8, 500	3, 800					
真空凍結 乾燥装置				3	3	72, 000	22, 800					
フローサイトメーター		1			1	減免						
計	3	1		9	13	107, 100	30, 400					

才 依頼検査 (件数)

h 11.	依頼者							
名 称	養鯉業	養殖業	漁業団体	企業等	計	手数料(円)		
ウイルス検査	41	1	4 (4)	1	47 (4)	745, 500		
細菌検査			1 (1)		1 (1)			
寄生虫検査								
計	41	1	5 (5)	1	48 (5)	745, 500		

() は減免件数(内数)

力 証明事務 (件数)

T			
項目	依頼件数	証明書発行件数	手数料(円)
成績書	10	10	4,800円(4件) 依頼検査で徴収(6件)
証明書	451	451	492, 600
計	457	457	497, 400

(3) 広報活動

ア 投稿・学会等口頭発表

(ア) 論文雑誌投稿

投稿論文のタイトル	発表者氏名	発表誌. 巻(号) 掲載頁(最初の頁-最終の頁),発行年
Factors driving the settlement of Pacific oyster <i>Crassostrea gigas</i> larvae in Hiroshima Bay, Japan	lKatsuvuki Aho	Aquaculture, 563 (1), 2023

(イ)学会発表

タイトル	発表者氏名	発表学会等
広島県のカキ養殖における採苗安定化 の取り組み	水野 健一郎	日本付着生物学会創立50周年記 念シンポジウム (2022)
マガキ浮遊幼生の鉛直分布と環境因子	鬼塚剛,浜口昌巳, 阿保勝之,紫加田知幸, 松原賢,隠塚俊満, 水野健一郎	令和 5 年度日本水産学会春季大 会
広島湾におけるマガキ浮遊幼生動態シ ミュレーション	鬼塚剛,阿保勝之, 池田俊一朗,水野健一郎, 浜口昌巳	令和 5 年度日本水産学会春季大 会
三倍体マガキの夏期収獲前抑制によるストレス応答と味への影響	齊藤(北岡)千佳, 外川柚理,平田靖, 永井崇裕, 五十嵐彩乃,中里水萌, 良永(加藤)裕子	令和 5 年度日本水産学会春季大 会
日本におけるニシキゴイのウイルス性 コイ浮腫症の保有率および遺伝子型に 関する研究		令和 4 年度日本魚病学会秋季 大会
アユから分離された異なる血清型を持 つ冷水病菌	永井崇裕,谷口千穂	令和 5 年度日本魚病学会春季大 会
アユ細菌性冷水病に対する耐病性責任 遺伝子の探索 (2)	近崎友亮,口石雄大, 岡田亮,中本正俊, 永井崇裕,大原健一, 藤井亮吏,坂本崇	令和 5 年度日本魚病学会春季大 会

イ 新聞報道等の状況

	1)	1, 11, 12	
掲載日、放送日		メディア名	報道概要
新聞	7/28 広島経済レポート Ξ		三津湾が EU 向けカキ生産海域に指定 輸出へモニタリング調査指導
· 維誌等	8/26	中国新聞	広島空港にカキ出荷施設 アジア市場即日輸出へ
等 	3/2	広島経済レポート	空港に活カキ出荷施設 仏で日本酒とトップセールス
テレビ	2/3	NHK 広島	かきの斃死について

(4) その他

ア 職員研修

研 修 名	研修期間	研修場所	主 催 者
スマート研究推進プログラム	6/30~3/28	Web	県立総合技術研究所
知的財産基礎研修	10/28	広島市	県立総合技術研究所
化学薬品の取り扱いに関する研修	2/16	Web	県立総合技術研究所畜技技術セ ンター
令和 4 年度養殖衛生管理技術者養成研修 基礎 コース	11/15-11/20	Web	株式会社エスアイ総合研究所
資源管理研修	12/15-16	Web	国立研究開発法人水産研究教育 機構
広島品質工学研究会	9/16, 3/17	広島市	広島品質工学研究会
耳石年齢査定に関する技術講習会	1/16~19	廿日市市	国立研究開発法人水産研究教育 機構

イ 視察・見学(4件、23人)

- ·国県市町関係者(1件、2人)
- ・民間企業関係者(2件、5人)
- ・一般個人・団体(1件、16人)

5 観測資料

(1) 定時観測結果(令和4年1月~令和4年12月)

観測点:広島県呉市音戸町波多見地先

観測時刻:午前9時

観測層:表層

水温計:JFEアドバンテック社製 DEFI2-T

月	旬	令和4年水温 (℃)	平年水温 (°C)	月	旬	令和4年水温 (℃)	平年水温 (℃)
	上	12. 4	12. 5		上	23. 6	21.8
1月	中	11. 4	11.7	7月	中	24. 2	23.0
	下	10.7	10.8		下	25. 5	24. 2
	上	9. 9	10. 4		上	26. 5	25. 3
2月	中	10.0	10.3	8月	中	26. 5	25.8
	下	9. 5	10.3		下	27. 3	25. 9
	上	10. 2	10.6		上	26. 7	25.8
3月	中	11.8	10.9	9月	中	26. 9	25. 6
	下	11.9	11.5		下	25. 3	24.8
	上	12.8	12. 4		上	25. 0	23. 9
4月	中	14. 2	13. 2	10月	中	23. 3	22. 9
	下	15. 1	14. 2		下	22. 2	21.6
	上	15.8	15. 4		上	20.8	20. 3
5月	中	16. 9	16. 4	11月	中	20. 2	18.9
	下	18. 5	17. 5		下	19. 2	17. 6
	上	19. 2	18. 7		上	17. 3	16. 2
6月	中	20. 3	19. 7	12月	中	15.8	14.8
	下	21.7	20. 7		下	_	13. 6

平年値:1991年(平成3年)から2020年(令和2年)までの30年平均

(2)漁場環境観測結果

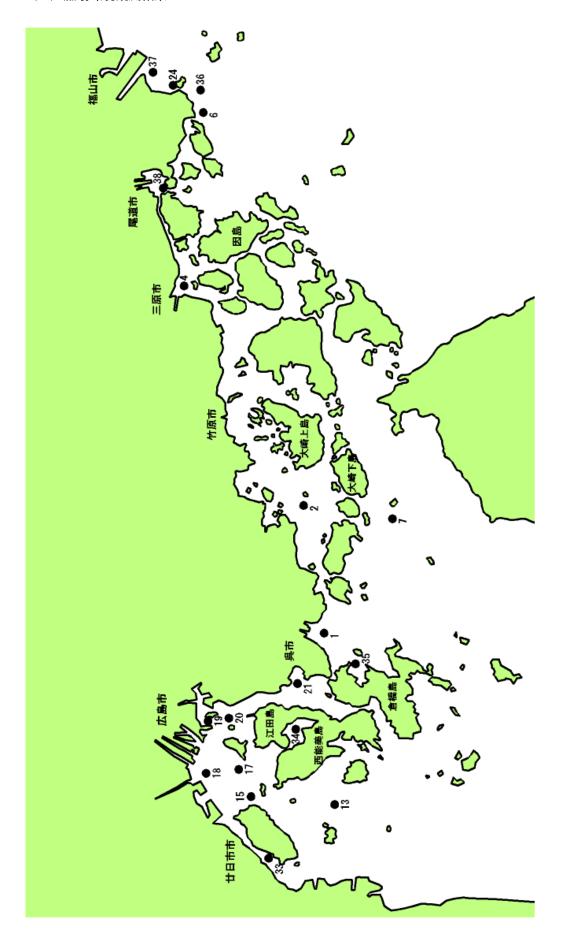


図 調査点位置

海域・年月								戊	.島湾,安	芸灘. 備	後攤北部	ß	令和4年	1	月					
調査点	番号	1	2	4	6	7	13	15	17	18	19		21	24	33	34	35	36	37	38
	緯度	34° 12'						34° 18'				34° 19'		34° 23'		34° 14'		34° 22'	34° 25'	34° 24'
	経度	132° 36'		133° 07'			132° 21'						132° 31'					133° 23'	133° 25'	
調査日		6	6	6	6	6	5	5	5	5	5	5	5	6	5	5	5	6	6	6
時 刻		8:35	9:02	10:05	10:59	14:20	13:10	11:09	10:21	10:10	9:45	9:35	9:10	11:24	11:46	10:41	8:30	11:11	11:36	10:36
天 候		0	0	С	С	Вс	0	0	Вс	Вс	Вс	Вс	В	Вс	0	С	Вс	Вс	Вс	С
気 温	(\mathcal{C})	5. 9	5. 9	7.1	7.1	8.8	10.3	9. 1	8.9	8.7	8.8	9. 1	9. 1	8.7	9. 1	8.5	9. 1	6.3	7.9	6.4
雲 形		Ns	Ns	Ns	Ns	Cu	St	As	As	Cs	Cs	Cs	Ci	Cu	As	As	Ac	Ns	Cu	Ns
雲 量		10						10	6		4	4	2	6	l		5	7	6	8
風向		ENE _	NE .		E		ESE	NNE				ENE	NNW	NNE	NE _	NNE		ENE	ENE	ENE
風力		2	4				0	3	3	3	2	2	3	0	3	0	0	0	0	2
波浪		2	2		1 0		0	2	0	2	0	1	1	0	1	0	0	0	0	0
うねり 透明度	(m)	3. 2	4.5	3.5			ľ	6.8	7.5	7.8	4. 8	6. 2	6. 5	4.5	_		6.8	4. 2	5. 5	3. 8
水色	(111)	9	8				7	7	7.5	7. 0	9.0	8	7	9.5	7	7	7	4. 2	9. 9	9
水深	(m)	11. 0	31. 5	20. 5	18. 5		35.0	35. 5	19.0	14. 5	13. 0	19. 5	23. 0	8.0	17.0	22.0	9.5	14. 5	7.5	17. 0
水温	0 m		13. 9		11.0	14. 3	13. 7	13. 2	13. 1	13. 1	13. 1	13. 2	12. 9	10. 1	12. 0	11. 9	12.6	10. 2	10. 4	11. 4
(°C)	2 m		14. 0	13. 0	11.0	14. 2	13. 8	13. 3	13. 0	13. 0	13. 2	13. 2	12.8	9.9	11.9	11. 9	12. 5	10. 2	10. 4	11. 4
	5 m	13. 9	14.0	13.0	11.0	14. 2	13. 9	13. 3	13. 1	13. 2	13. 5	13. 2	12.8	10.0	12.0	11.9	12. 5	10.1	10.4	11.4
	10 m	13. 9	14.0	13.0	11.0	14. 2	14.0	13.5	13. 7	13.7	13.6	13.5	12.8		12. 1	11.9		10.2		11. 4
	20 m		14.0	13.0		14. 2	14. 2	13.6					12.7			11.9				
	30 m		13. 9			14.2	14. 2	13.6												
	B-1m	13. 9	13. 9	13.0	11.0	14.2	14.2	13.7	13.8	13. 7	13.6	13.5	12.6	10.0	12.8	11.9	12.5	10.2	10.4	11.4
DO	0 m	8.01	7. 99	8. 28	8. 84	8. 13	8.72	8. 66	8. 78	8.70	8. 19	8. 28	8. 53	9.78	8. 87	8.70	8. 59	9.67	9. 58	8.81
(mg/l)	2 m	8.04	8.05	8. 29	8. 85	8. 14	8.72	8. 65	8. 79	8.70	8. 18	8. 29	8. 55	9.82	8. 89	8.71	8. 55	9.69	9.61	8. 80
	5 m		8.04	8. 33	8. 88		8. 64	8. 67	8. 82	8. 72	8. 05	8. 37	8. 57	9.64	8. 91	8.72	8. 55	9. 70	9. 58	8. 82
	10 m		8.04	8. 33	8. 90		8. 52	8. 64	8. 32	8. 22	8.00	8. 33	8. 57		8. 86	8.71		9.65		8.84
	20 m		8.04	8. 32		8. 11	8.34	8.55					8. 62			8. 68				
	30 m B-1m		8. 05 8. 05	8. 32	8. 91	8. 11 8. 10	8. 32 8. 31	8. 49 8. 43	8. 23	8. 09	7. 99	8. 22	8. 66	9. 51	8. 43	8. 68	8. 52	9. 59	9. 56	8.85
塩 分	0 m		32. 32		31. 71		32. 24	31. 72	31. 40	31. 27	31. 12	31. 53	31. 49	31. 36	31. 39	31. 53	32. 03	31. 49	31. 36	31. 77
(psu)	2 m		32. 33		31. 73		32. 28	31. 75	31. 42	31. 28	31. 22	31. 56	31. 49	31. 39	31. 40		32. 03	31. 51	31. 38	31. 84
	5 m		32. 34		31. 73		32.38	31.74	31.44	31. 35	31. 57	31. 58	31. 49	31. 46	31. 42	31.55	32.04	31. 51	31. 39	31.84
	10 m	32. 34	32. 34	32. 12	31. 73	32. 51	32.38	31. 91	31. 98	31. 75	31.71	31. 78	31.50		31. 47	31.55		31. 52		31. 85
	20 m		32. 34	32. 12		32. 52	32.46	31. 96					31. 48			31.55				
	30 m		32. 32			32. 52	32.46	32.00												
	B-1m	32. 34	32. 32	32. 12	31. 73	32. 52	32.47	32.07	32.03	31. 95	31.71	31.81	31. 49	31. 46	31. 77	31.55	32.12	31. 52	31. 39	31. 85
NH ₄ -N	0 m	0.00	0.09	0.00	0.38	0.00	0.00	0.13	1.13	2.03	8. 27	0.72	0.37	3.74	0.70	0.40	0.71	1. 11	4.63	0.80
(µmol/l)	5 m				0.38		0.05	0.07	1. 11	1. 46	2. 33	0.74	0. 20	3. 12	0.65		0.76	0.87	4. 22	0.65
NO 11	B-1m		0.00	0.00	0. 35		0.07	0.01	0. 25	0.66	0.87	0.53	0. 32	2.94	0.58	0.18	0.77	0.77	4. 33	0.58
NO ₂ -N	0 m		0.52				0.43	0.76		1. 31	1. 46	1. 21	0.96	0. 28	1.07		0.49	0. 20	0.37	0.44
(µmol/l)	5 m		0. 47 0. 48				0.41	0.70	1. 17 0. 74	1. 19	1.30	1. 12	0.95	0. 22	1.07	0.40	0.48	0.20	0.37	0.39
NO ₃ -N	B-1m 0 m		3. 12				0.42	0. 64 1. 47	2. 47	0. 90 2. 94	1. 15 12. 34	0. 96 3. 11	0. 83 2. 07	1. 16	0. 89 2. 08	0. 40 1. 10	0. 46 2. 58	0. 15 0. 6	0. 37 1. 71	0. 43 2. 86
(μmol/l)	5 m		3. 16				1.06	1. 36	2. 48	2. 63	4. 59	2. 83	2.03	1. 02	2.00	0.96	2. 67	0.64	1. 68	2.60
·F*/ */	B-1m		3. 43		0. 57		1. 38	1. 19	1. 47	1.73	2. 77	2.03	1.96	0.94	1. 29	1.03	2. 56	0.54	1. 71	2.64
PO ₄ -P	0 m		0. 92				0. 28	0.35		0.46	0.93	0.46	0. 44	0.24	0. 41	0.71	0.50	0. 22	0. 63	0. 56
(μmol/l)	5 m		0.51				0.50	0.38		0.47	0.74	0.43	0.39	0.26			0.51	0. 22	0. 29	0.58
	B-1m	0. 51	0. 52	0.58	0.44	0. 48	0.52	0.36	0.35	0.41	0.49	0.44	0.38	0.27	0.45	0.43	0.52	0. 23	0.34	0.57
クロロフィル	0 m	1.73	1.50	2. 11	2. 85	1.66	3.98	4.80	4.64	3. 76	2.77	3. 70	4.04	9.36	2. 78	2.24	1.44	10.49	8.86	2.83
$(\mu \mathrm{g/l})$	5 m	1.67	1. 52	2. 11	2. 60	1. 76	4.53	3. 97	5. 34	4. 44	4. 35	3. 63	4. 04	9. 26	3. 03	2. 16	1.31	10.32	9. 14	2.62
	B-1m	1. 69	1.63	1.97	3.04	1. 79	4.53	5.94	5.03	5. 18	4.02	4. 18	3. 97	8.46	5. 01	2.32	1.30	9.60	9. 33	2.69
フェオフィチン	0 m	0.37	0.31	0.46	0.34	0.24	0.16	0.42	0.47	0.32	0.49	0.36	0.41	0.43	0. 26	0.24	0. 29	0.46	0.44	0.19
$(\mu g/l)$	5 m	0.39	0.35		0.60		0.11	0.31	0.51	0.36	0.34	0.31	0. 29	0.43	0. 27	0.35	0.26	0.43	0.36	0.34
	B-1m	0.41	0.72	0.70	0.69	0.37	0.02	0.97	0.32	0.53	0.42	0.48	0.33	0.58	0.50	0.73	0.38	0.38	0.78	0.38

海域•年月								rt	自.冰 生	士 維 /告	公番业立	7	△和4年	9	月					
	亚口.	1				7	1.0		島湾, 安 17		後灘北部		令和4年			9.4	9.5	20	9.7	20
調査点	番号	1	2					15		18	19	20	21	24	33	34	35	36	37	38
	緯度 経度	34° 12' 132° 36'	132° 47'	34° 22'		34° 07' 132° 47'		34° 18' 132° 22'		34° 20' 132° 23'		34° 19'			34° 16' 132° 16'		34° 10' 132° 33'	34° 22' 133° 23'	34° 25' 133° 25'	
調査日	71177	2	2	2		2	1	1	1	1	1	1	1	2	1	1	1	2	2	2
時刻		15:09	14:40	13:27	11:50	9:13	10:09	12:11	13:29	13:42	14:16	14:27	14:48	11:25	11:36	12:45	8:30	11:37	11:12	13:03
天 候		0	0	Вс	Вс	Вс	С	С	С	С	С	С	Вс	Вс	С	Вс	В	Вс	Вс	Вс
気 温	$(^{\circ}\!C)$	9. 7	9. 1	9.1	9.1	8.7	9. 1	9.5	9.5	9. 1	9.9	9. 9	9. 9	8.3	10.7	9. 1	7.7	7.9	9. 1	9. 7
雲 形		As	As	St	Cu	Cs	Sc	Ns	Ns	Ns	Ns	Ns	Ns	Cu	Sc	Ns	Cs	Cu	Cu	St
雲 量		10	10	7	5	6	8	9	8	8	8	8	7	3	9	6	2	3	3	7
風 向		SSW	SW	SW	SW	WNW	SW	SW	WNW	WNW	WNW	WNW	WNW	SSW	SW	W	WSW	WSW	SW	SW
風 力		4	4	3	4	3	4	5	5	5	4	3	3	3	5	5	2	4	4	3
波 浪		2	2	2	2	2	2	2	2	2	1	2	2	1	2	1	0	2	2	1
うねり		1	1		1	1	1	1	1	1	0	1	1	0	1	0	0	1	1	0
透明度	(m)	6. 2	8			8.8	8.5	8. 5	7	6.5	6	7	6. 2	4	7.2	8.8	9	6	4. 5	6. 5
水 色		8	7				8	8	7	8	8	8	8	9	6	7	7	8	9	8
水深	(m)	11. 5	30.0		23.0	50.5	36.0	34. 5	19.0	14. 0	12. 5	18.5	21.0	8.5	16.0	21.5	11.0	15.5	9.0	19.5
水 温	0 m		11.8	11.7	9. 2	11.7	11.7	11.7	11. 2	11. 3	11. 2	11.5	11.1	9.0	11.0	10.9	10.5	9. 2	8.9	10.5
(℃)	2 m 5 m		11.7 11.7	11. 4 11. 4	9. 2 9. 1	11.7 11.7	11. 7 11. 7	11. 6 11. 6	11. 1 11. 4	11. 2 11. 6	11. 2 11. 4	11. 5 11. 5	11. 1 11. 1	8. 9 8. 8	10. 9 10. 7	10. 8 10. 9	10. 5 10. 5	9. 0 9. 0	8. 8 8. 7	10. 6 10. 6
	10 m		11.7	11.4	9. 1	11.7	11. 7	11. 7	11. 4	12.0	11. 4	11. 6	11. 1	0.0	11.4	10. 9	10. 3	8.9	0.1	10. 5
	20 m		11.7	11.4	9. 1	11. 8	12. 0	11. 7	11. 3	12.0	11.1	11.0	11. 1		11.4	11.6	10.4	0.9		10.0
	30 m		11.7	111.1	0.1	11.8	12.0	11. 9					1111			1110				
	B-1m		11. 7	11. 4	9. 1	11.8	12.0	11. 9	11.9	12.0	11.7	11.7	11. 1	8.8	11.8	11.6	10. 4	8.9	8.7	10.6
DO	0 m		8. 89	9. 13	9. 40	8. 84	8. 75	9. 03	9. 42	9. 38	8. 76	8.85	8. 97	9. 78	8. 98	8.85	9. 15	9. 72	10.42	9. 38
(mg/l)	2 m	9. 15	8. 90	9. 18	9. 41	8. 86	8.76	9.03	9.44	9. 37	8.76	8. 86	9.00	9.84	9. 02	8.86	9.14	9. 75	10.44	9. 39
	5 m	9.04	8. 92	9. 22	9. 50	8. 90	8.78	9. 08	9. 36	9. 20	8.72	8. 89	9.04	9.87	9. 09	8.90	9. 18	9. 79	10.44	9. 42
	10 m	8. 93	8.94	9. 23	9. 52	8. 88	8.71	8. 99	8.61	8.56	8.40	8. 72	8. 97		8. 45	8.90	9. 20	9.74		9.42
	20 m		8. 93	9. 19	9. 54	8. 83	8.64	8. 65					8. 91			8.30				
	30 m		8. 92			8. 82	8.60	8. 59												
	B-1m	8. 93	8. 92	9.19	9. 53	8. 82	8.62	8. 58	8.49	8. 16	8.32	8. 40	8.91	9.83	8. 03	8. 28	9. 20	9.67	10.27	9.41
塩 分	0 m		32. 57		32. 05	32. 61	32.50	32. 22	31.76	31. 50	31.71	32. 16	31. 95	31. 95	31. 98	32.06	32. 32	31. 97	31.64	32. 27
(psu)	2 m		32. 59		32. 05	32. 61	32.50	32. 24	31. 78	31. 51	31. 73	32. 16	31.96	31. 94	31. 94	32.08	32. 30	31. 97	31. 64	32. 29
	5 m		32. 59	32. 49	32. 05	32. 63	32.53	32. 24	32.01	31. 81	32.06	32. 16	31.96	31. 94	31. 92	32.09	32. 30	31. 97	31. 67	32. 32
	10 m		32.60		32.04	32. 66	32.65	32. 31	32. 37	32. 24	32. 20	32. 21	31. 96		32. 16	32. 10	32. 32	31. 97		32. 32
	20 m 30 m		32. 59 32. 45		32.04	32. 67 32. 67	32. 72 32. 72	32. 46 32. 50					31. 98			32. 31				
	B-1m		32. 40		32. 04	32. 67	32. 72	32. 50	32. 44	32. 34	32. 20	32. 27	31. 98	31. 94	32. 35	32.33	32. 32	31. 98	31.71	32. 32
NH ₄ -N	0 m		0.00			0. 45	0.91	0. 62	0. 27	5. 03	3. 87	0.00	0.00	0.00	0. 43	0.44	1. 25	0.00	5. 15	0.00
(µmol/l)	5 m	0. 19	0.00	0. 27	0. 56	0.54	0.55	0.85	0. 16	3. 91	1. 19	0.00	0.00	0.00	0. 28	0.20	1.34	0.00	4.01	0.00
	B-1m	0.00	0.08	0.32	0.32	0.61	0.28	0.93	0.39	1.04	0.70	0.06	0.00	0.00	1. 25	0.59	1.74	0.00	2.50	0.00
NO ₂ -N	0 m	0. 22	0.30	0.09	0.08	0. 28	0.22	0.23	0.15	0.38	0. 29	0.21	0.09	0.07	0. 22	0.12	0.06	0.09	0.24	0.05
$(\mu \text{mol/l})$	5 m	0.30	0. 28	0.10	0.07	0.32	0.23	0. 22	0. 15	0.31	0. 22	0. 20	0.08	0.04	0.14	0.08	0.06	0.06	0. 22	0.05
	B-1m		0.27		0.06	0.35	0.36	0.24	0.28	0.23	0.23	0. 22	0.09	0.05	0.24	0.18	0.07	0.07	0.19	0.05
NO ₃ -N	0 m		0.85		0. 19	0.77	0.42	0.52	0.58	1. 14	5. 22	0.83	0.30	0.28	0.61	0.53	0.48	0. 27	1.06	0.30
(µmol/1)	5 m		0.76		0. 20	0.89	0.44	0.56	0.98	1.03	2.00	0.86	0.36	0.28	0.48	0.34	0.65	0. 15	0.91	0.30
DO D	B-1m		0.76		0. 19	0.96	0.88	0.62	1. 15	0.75	1.53	0.75	0.34	0.18	0. 73	0.56	0. 56	0. 19	0.74	0. 28
PO ₄ -P	0 m		0. 23		0. 12	0. 21	0.19	0.18	0.14	0.46	0.45	0. 20	0. 13	0.03	0. 23	0.18	0. 21	0.05	0.00	0.17
(μmol/l)	5 m		0. 25 0. 23		0. 10	0. 28 0. 22	0. 17 0. 20	0. 16 0. 21	0. 16 0. 23	0.40	0. 28 0. 25	0. 25 0. 27	0. 13 0. 16	0.09	0. 20 0. 37	0. 16 0. 23	0. 23 0. 23	0.04	0.00	0. 18
クロロフィル	B-1m 0 m		2. 56		2. 74	2. 29	3.33	4. 18	4. 75	3.90	3. 08	4. 47	3. 74	5. 40	2. 49	1. 59	1. 02	4. 32	11. 31	0. 24 2. 29
(μg/l)	5 m		2. 49			2. 59	3.51	3.94	4. 75	4. 87	4. 51	4. 17	3. 65	5. 64	2. 49	1. 93	0.87	4. 52	12. 49	2. 49
4-0/ -/	B-1m		2. 97		3. 79	3. 08	2.88	3. 22	3. 61	3. 62	4. 49	3. 58	3. 84	5. 76	2. 12	2. 51	1. 01	5. 13	14. 23	2. 40
フェオフィチン	0 m		0. 22				0.37	0.45	0.72	0.72	0. 45	0.58	0.43	0.61	0. 33	0.30	0. 28	0.49	1.03	0. 16
(µg/l)	5 m		0.13		0. 24	0.32	0.30	0.46	0.76	0.76	0.50	0.64	0.52	0.78	0.41	0.38	0. 23	0.48	0.91	0. 29
	B-1m	0.14	0. 52	0.31	0. 16	0. 39	0.24	0.54	0.47	0.68	0.62	0.42	0.70	0.75	0.43	0.42	0.37	0.55	1. 18	0. 29

海域•年月								戊	、島湾,安	芸灘, 備	後灘北部	ß	令和4年	3	月					
調査点	番号	1	2	4	6	7	13	15		18	19		21	24	33	34	35	36	37	38
.,	緯度	34° 12'						34° 18'				34° 19'		34° 23'		34° 14'			34° 25'	34° 24'
	経度			133° 07'			132° 21'									132° 27'		133° 23'		
調査日		1	1	1	1	1	2	2	2	2	2	2	2	1	2	2	2	1	1	1
時 刻		8:38	9:06	10:08	11:02	14:10	10:03	11:25	12:55	13:08	13:41	13:53	14:14	11:30	10:49	11:55	8:20	11:15	11:43	10:40
天 候		0	0	R	R	R	0	Вс	Вс	Вс	Вс	Вс	Вс	R	С	Вс	0	R	R	R
気 温	(\mathcal{C})	9. 9	9.9	7.5	8.0	7.7	11.1	11.5	12.7	12.3	13.9	13. 1	12.7	7.5	12.3	12. 3	12. 2	7.5	7. 3	7. 5
雲 形		Cs	Cs	Sc	Sc	Sc	As	As	Ac	Ac	Ac	Ac	Ac	Sc	As	Ac	As	Sc	Sc	Sc
雲 量		10					10	7				5			8				10	10
風向		Е	ENE	NW	NE		N	SSW	S			S	SSW	N	WSW	SW	WNW	NNE	NNE	NNE
風力		2	2			3	0	3	4	4 2	2	3	3	3	1	3	0	3	2	2
波 浪 うねり		0	1 0			0	0	0	1	1	0	1	1	1 0	0	0	0	0	0	0
透明度	(m)	4. 5	7			8	ľ	6. 2	8	6. 2	5	7. 8	7	4.5	9		8. 5	5	3.8	5
水色	(111)	9	8				7	8	8	8	8	8	7	8	7	6		8	9	8
水深	(m)	13. 5	31. 5			42.5	35.5	40.5	18. 0	13. 5	9.5	18. 5	20. 5	9.5	16. 5		11. 0	16.0	9.0	18. 0
水温	0 m		10.3		8.7	10.5	10.4	11. 1	10.8	11.0	11. 2	10.7	10.5	8.4	10.2		10.0	8.5	8.4	9. 5
(°C)	2 m		10.3	10.1	8.7	10.5	10.4	10.4	10.5	10.7	10.6	10.6	10.4	8.4	9.9	9. 9	9. 9	8. 5	8.3	9. 5
	5 m	10.1	10.3	10.1	8.7	10.5	10.6	10.3	10.3	10.4	10.3	10.2	10.1	8.5	9.9	9.8	9.9	8. 5	8.4	9.5
	10 m	10.1	10.3	10.1	8.6	10.5	10.5	10.3	10.4	10.4		10.2	10.0		10.0	9. 9	10.0	8.5		9. 5
	20 m		10.3		8.7	10.5	10.5	10.4					10.1			10.3				
	30 m		10.4			10.6	10.5	10.4												
	B-1m	10.1	10.4		8.7	10.6	10.5	10.4	10.4	10.5	10.3	10.4	10.1	8.5	10.3	10.3	10.0	8.5	8.3	9.5
DO	0 m		9. 20		9. 46	9. 10	9.44	10.93	10.08	11. 27	9. 55	9. 78	9. 54	9.86	9. 76		9. 20	9. 47	10. 19	9.71
(mg/1)	2 m		9. 22			9. 12	9.43	11. 38	10. 15	11. 20	9. 63	9. 81	9. 54	9. 86	9. 79	9.33	9. 24	9. 47	10. 23	9.69
	5 m		9. 26			9. 27	9.33	10.34	9. 88		9. 79	9. 79	9. 51	9. 77	9. 61	9.50	9. 27	9. 52	10. 24	9.72
	10 m 20 m		9. 26 9. 25		9. 50 9. 49	9. 19 9. 18	9. 28 9. 03	9. 58 9. 18	9. 26	9.38		9.62	9. 32 8. 98		9. 39	9. 44 8. 92	9. 27	9.50		9. 73
	30 m		9. 24		3.43	9. 21	9.00	9. 10					0. 50			0.92				
	B-1m		9. 24		9. 50		9.00	8. 98	9. 05	8. 89	9. 57	8. 66	8. 98	9. 48	8. 88	8.87	9. 27	9. 49	10. 15	9.71
塩 分	0 m		32. 78		1	32. 92	32.68	29. 24	31.12	30. 40	30. 40	32. 12	32. 17	32. 19	32. 05		32. 55	32. 42	32.06	32. 34
(psu)	2 m	32.71	32. 79	32.66	32. 39	32. 94	32.71	31. 52	31. 49	31.71	31. 45	32. 09	32. 15	32. 21	32. 06	32. 13	32. 57	32. 35	32.06	32. 37
	5 m	32.71	32. 79	32.67	32. 39	32. 95	32.83	32.13	32. 39	32. 29	32. 25	32. 24	32. 29	32. 30	32. 13	32.39	32. 59	32. 35	32.07	32. 37
	10 m	32.71	32. 79	32.67	32. 39	32. 94	32.84	32. 53	32.62	32. 42		32. 36	32. 30		32. 44	32.44	32.63	32. 36		32. 38
	20 m		32.80		32. 39	32. 94	32.88	32. 69					32. 37			32.65				
	30 m		32.81			32. 96	32.89	32. 73												
	B-1m		32. 81			32. 96	32.89	32.75					32. 37	32. 34	32.60			32.36	32. 11	32. 39
NH ₄ -N	0 m		0.05		0.04	0. 19	0.00	12.06	1.48	13.97	5. 11	0. 15	0.00	0.73	0. 14	0. 29	1.88	0.00	2.85	0. 24
(µmol/l)	5 m B-1m		0.06 0.08		0. 13	0.64	0.02	0. 21	0.01	0. 15 0. 38	0.33 0.15	0.00	0.00	0.31	0. 17	0.00	1. 91 0. 48	0.00	2. 61 1. 68	1. 03 0. 17
NO ₂ -N	0 m		0.08			0. 19	0.24	0. 99			0. 15	0. 39	0. 26	0.13	0. 09		0.48	0.00	0. 22	0.17
(μmol/l)	5 m		0. 16				0.11	0.11		0.09	0. 10	0.07	0.08	0.10	0. 12		0. 13	0. 09	0. 20	0. 11
	B-1m		0. 18			0. 29		0. 13	0.09	0. 12	0.08	0.09	0.08	0.09	0. 10		0. 10	0.09	0. 15	0.11
NO ₃ -N	0 m		0.48			0.78	0.21	4. 24		2.90	8.63	0.58	0. 29	0.38	0. 27		0.81	0. 29	0.82	0.55
$(\mu\text{mol/l})$	5 m	0.77	0. 55	0.32	0.41	1.74	0.30	0. 23	0. 24	0. 18	0. 56	0. 22	0. 27	0.30	0. 20	0.19	0. 95	0.17	0.66	1. 79
	B-1m	0. 55	0.50	0.35	0. 23	0. 75	0.35	0.31	0.3	0.41	0.42	0. 29	0. 26	0. 25	0. 19	0.31	0.50	0.20	0.42	0.58
PO ₄ -P	0 m	0. 20	0.31	0. 28	0. 17	0.35	0.16	0.53	0.18	0.65	0.53	0.11	0.08	0.07	0. 17	0.21	0.31	0.13	0.02	0. 22
$(\mu\text{mol/l})$	5 m	0.21	0. 27	0. 26	0.13	0. 27	0.18	0. 22	0.12	0.24	0. 21	0.08	0. 11	0.11	0. 22	0.17	0.30	0.12	0.03	0.23
	B-1m		0.28			0.35	0.27	0.26		0.22	0.16	0.29	0.20	0.16	0. 26	1	0.26	0.11	0.00	0. 27
クロロフィル	0 m		2.86			2. 42	1.57	4.50		6. 55	3.00	3. 14	2.54	4.71	2. 64		1. 15	2. 27	9. 22	2.72
$(\mu g/l)$	5 m		2.94				2. 23	4. 77			4. 17	2. 30	3. 08		l		1.08	2. 37	9. 15	2. 33
7 200	B-1m		3. 12			2. 58	2.78	2. 39		5. 80	4. 82	4. 65	3.00	2. 47	4. 85		1.03	2. 41	10.62	2.38
フェオフィチン	0 m		0.03			0. 22	0.09	0.30		0.55	0.41	0. 12	0.01	0. 23	0. 12		0. 20	0. 23	0.64	0. 27
(μg/l)	5 m		0. 12			0. 12	0.17	0. 28		0.48	0. 26	0.09	0.09	0. 23	0. 26		0. 18	0. 21	0.48	0. 21
	B-1m	0.12	0.10	0.35	0. 28	0.26	0.37	0.57	0.43	1.03	0.30	0.39	0.28	0.25	0.67	0.35	0.19	0.17	0.35	0.31

海域·年月								広	島湾,安	芸灘, 備	後攤北部	ß	令和4年	4	月					
調査点	番号	1	2	4	6	7	13	15	17	18	19			24	33	34	35	36	37	38
	緯度	34° 12'	34° 13'	34° 22'	34° 22'	34° 07'	34° 11'	34° 18'	34° 19'	34° 20'	34° 21'	34° 19'	34° 14'	34° 23'	34° 16'	34° 14'	34° 10'	34° 22'	34° 25'	34° 24'
	経度	132° 36'	132° 47'	133° 07'	133° 21'		132° 21'					132° 29'	132° 31'			132° 27'		133° 23'	133° 25'	133° 14'
調査日		7	7	7	7	7	5	5	5	5	5	5	5	7	5	5	5	7	7	7
時 刻		15:30	15:00	13:48	12:25	9:35	14:07	12:16	11:19	11:05	10:31	10:16	9:52	11:56	12:59	11:41	9:02	12:13	11:36	13:15
天 候		Вс	Вс	В	В	BC	BC	В	В	В	В	В	В	В	BC	В	В	В	В	В
気 温	$({}^{}_{}\mathbb{C})$	16. 4	15.8	17.5	15.1	14.3	14.6	13.5	14. 1	13.9	13.6	12.7	13.6	13. 7	13.9	15.5	12.3	14. 3	14.8	17. 5
雲 形		Cs	Cs	Cs		Cs	Cs	Cs						Cs	Cs			Cs	Cs	Cs
雲 量		4	6	2	0	6	4	2	0	0	0	0	0	2	3	0	0	1	2	2
風向		S	SSW		SW		S	SSW	WSW	S		WNW	N	SSW	SSW	Е		SSW	SSE	S
風力		4	5				3	3	0	0	2	0	0	3	3	0		3	2	3
波浪		2	2				2	2	1	1	2	2	2	2	2	1	0	2	1	1
うねり	()	0	0				0	4.0	0	0	0	0	0	0	7 1	0	0	0	0	0
透明度 水 色	(m)	4.0	5.1				8.0	4.8	4.9	3. 9 6	4.0	6.0		2.3	7. 1 5	9. 6 5	5. 9 7	3. 2	3. 9 6	4. 2
水深	(m)	11.5	28. 0		22. 5		33. 5	35. 5	19. 0	14. 5	13. 5	19. 5	22. 5	6.5	15. 5	22. 0	10.0	14. 5	7.5	17. 5
水温	0 m		12. 3		13. 1	12. 1	13. 3	13. 2	12. 6	12. 5	12. 6	12. 6		13. 3	12.8	14. 2	12. 6	13. 4	14. 0	13. 7
(°C)	2 m		12.3		12.7	11.9	13. 2	12. 9	12. 1	12. 3	12. 0	12. 7	12.6	13. 0	12. 7	13. 3	12. 4	12. 5	12. 7	13. 6
	5 m	12.8	12. 2	12. 2	12.6	11.8	12.9	12. 1	12.0	12. 2	11.9	12. 4	12. 2	12. 5	12. 1	12.5	12. 3	12. 2	12. 4	13. 2
	10 m	12.4	11. 9	12. 2	12.6	11.8	12.3	11.9	11.8	12. 1	11.8	12.3	12.0		11.8	11.9	12. 2	11.7		12. 9
	20 m		11.9	12.2	12.5	11.8	11.9	11.8					11.8			11.6				
	30 m					11.8	11.8	11.8												
	B-1m	12. 3	11. 9	12. 2	12.5	11.8	11.8	11.8	11.7	11.8	11.8	11.7	11.8	12.5	11.7	11.6	12.2	11.6	12. 1	12.7
DO	0 m	9.09	9.00	9.02	9. 55	8. 99	9.06	9.44	9. 68	10. 22	9. 88	9.57	9.36	10.30	8. 69	8.97	9.04	9. 95	9. 95	9. 17
(mg/l)	2 m		9.01	9.05	9. 51		9.10	9. 49	9. 78	10.38	9. 73	9.60	9.40	10.40	8. 70	9.05	9.06	10.06	10.11	9. 19
	5 m		9.06		9. 44	8. 98	9. 17	9.54	9. 79	10. 19	9. 27	9. 45	9. 31	10.04	8. 84	9. 21	8. 96	9. 92	9. 78	9. 21
	10 m 20 m		9. 05 9. 00		9. 40 9. 27	8.97	9. 25 9. 16	9.03	9.04	9. 66	8.64	9. 44	9. 13 8. 67		8. 78	9. 02 8. 35	8. 80	9. 19		9. 08
	30 m		9.00	9.00	9. 41	8. 95 8. 94	8. 90	8. 80 8. 75					0.07			0. 55				
	B-1m		8. 98	9.05	9. 28		8. 88	8. 75	8. 63	8. 73	8. 61	8. 44	8. 46	9. 81	8. 29	8. 31	8. 82	8. 85	9. 63	9.06
塩 分	0 m		32. 76		31. 94	32. 82	32.86	31. 98	31.80	31. 08	31. 49	32. 12	32. 17	31. 17	32. 11	31.93	32.66	31. 37	31. 35	32. 19
(psu)	2 m	32. 72	32. 76	32. 57	31. 95	32. 81	32.86	32.01	31. 78	31. 57	32.10	32. 12	32. 17	31. 22	32. 11	31.99	32.65	31. 58	31.63	32. 17
	5 m	32. 72	32. 76	32. 57	31. 96	32. 81	32.85	32. 22	31.90	31. 69	32.41	32. 30	32. 36	31. 70	32. 35	32.48	32.66	31.68	31.71	32. 20
	10 m	32.70	32. 75	32. 55	31. 97	32. 81	32.87	32.64	32.54	32. 12	32.47	32. 36	32.40		32. 52	32.67	32.68	32.04		32. 22
	20 m		32. 77	32. 56	32.00	32. 82	32.89	32.70					32. 47			32.70				
	30 m					32. 82	32.90	32.74												
	B-1m		32.77				32.90	32. 75	32.65	32. 58	32. 48	32. 57				32.71		32. 13	31. 67	32. 24
NH ₄ -N (μmol/l)	0 m 5 m		0.00		0. 12 0. 07	0. 29 0. 46	0. 21	0.74	0. 45 0. 23	0. 93 0. 47	3. 68 0. 44	0. 50 0. 37	0. 71 0. 47	9.81 3.35	0. 32 0. 12	0. 49 0. 48	0. 73 0. 54	7. 59 0. 47	8. 52 0. 00	0.00
(μιιιο1/1)	B-1m		0.03		0.07	0.40	0.14	0. 34	0. 42	0. 47	0. 44	0. 37	0. 47	2. 39	0. 12	0. 40	0.54	0. 47	0.00	0.00
NO ₂ -N	0 m		0.00				0.00	0.00	0.00	0.09	0. 16	0. 00		0.44	0.00	0.00	0.00	0.30	0.00	0.00
(µmol/l)	5 m		0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00		0.12	0.00	0.00	0.00	0.00	0.00	0.00
	B-1m	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.07	0.00	0.00	0.00	0.00	0.00	0.00
NO ₃ -N	0 m	0.31	0.35	0.39	0.41	0. 56	0.21	0. 59	0.33	0.91	11. 73	0.85	0.43	3. 44	0. 59	0.37	0. 56	2.61	0.00	0.00
$(\mu \text{mol/l})$	5 m	0. 28	0.31	0.32	0.32	1.06	0.24	0. 29	0.21	0. 26	2. 35	0. 29	0.22	1.39	0. 22	0.23	0.68	0. 28	0.00	0.00
	B-1m		0.31		0. 25		0.23	0.31	0.24	0.22	0.51	0.35		1.02	0.37	0.24	0.46	0.34	0.00	0.00
PO ₄ -P	0 m		0. 26				0.14	0. 29	0.10	0.03	1.05	0. 24		0.10	0.24	0.08	0.27	0.14	0.07	0. 29
(µmol/l)	5 m		0.31				0.14	0.09	0.09	0.06	0. 22	0. 24		0.00		0.15	0. 26	0.00	0. 12	0. 28
hood 1	B-1m		0. 26		0. 10		0.24	0. 22	0.35	0.37	0.35	0.30		0.02	0. 26	0. 28	0. 22	0.00	0.02	0.54
クロロフィル (μg/l)	0 m 5 m		0. 86 0. 79				0.30 0.11	0. 26 0. 45	1. 37 0. 83	5. 02 1. 35	4. 84 1. 60	3. 61 1. 11	1. 20 0. 27	3. 29 2. 29	0. 67 0. 40	0.38 0.18	0. 18 0. 61	5. 13 2. 38	2. 60 2. 34	1. 40 0. 50
(μg/ t/	B-1m		0.79		3. 04		0.11	1. 18	2. 81	2. 62	2. 28	2. 34		1. 43	0. 40	1.54	0. 01	3. 28	1. 17	0.82
フェオフィチン	0 m		0. 31		1. 48	0.36	0.33	0. 16	0.79	1.74	1. 39	0.71	0. 13	0.18	0. 32	0.15	0.08	0.49	0.34	0. 16
(µg/l)	5 m		0. 25		1. 29		0.07	0. 20	0. 52	0.90	0. 49	0. 29		0.06	0. 24	0.08	0.30	0.00	0. 17	0.06
	B-1m	0.49	0.38	0.43	0. 55	0. 37	0.27	0.57	0.86	0.70	0.76	0.48	0.69	0.18	0. 26	2.37	0.13	0.16	0.13	0.17

海域·年月								広	島湾,安	芸灘, 備	後攤北部	ß	令和4年	5	月					
調査点	番号	1	2	4	6	7	13	15		18	19		21	24	33	34	35	36	37	38
	緯度	34° 12'	34° 13'	34° 22'	34° 22'	34° 07'	34° 11'	34° 18'	34° 19'	34° 20'	34° 21'	34° 19'	34° 14'	34° 23'	34° 16'	34° 14'	34° 10'	34° 22'	34° 25'	34° 24'
	経度	132° 36'	132° 47'	133° 07'			132° 21'	132° 22'			132° 28'	132° 29'	132° 31'					133° 23'	133° 25'	133° 14'
調査日		9	9	9	9	9	6	6	6	6	6	6	6	9	6	6	6	9	9	9
時 刻		8:52	9:22	10:32	11:30	14:38	13:42	11:58	11:04	10:44	10:16	10:03	9:41	12:09	12:40	11:26	8:40	11:52	12:22	11:06
天 候		0	0	0	0	0	BC	0	BC	BC	BC	0	0	0						
気 温	$({\mathcal C})$	16. 3	15. 9	16.3	16.3	15.9	20.7	20.7	19.9	20.5	19.7	20. 1	20.9	16. 5	20.3	21.9	17.5	16.6	16.1	16.7
雲 形		Ns	Ns	Ns	Ns	Ns	Ac	Ac	Ac	Cs	Cs	Cs	Ac	Ns	Ac	Ac	Ac	Ns	Ns	Ns
雲 量		10	10	10	10	10	7	7	4	3	3	3	4	10	7	7	4	10	10	10
風向		Е	NE	ENE	ENE	ENE	S	SW	SW	SW	S	SSE	SW	ENE	SSW	SSE	S	ENE	E	ESE
風力		4	4			5	2	4	3	3	3	2	2	3	3	2	0	4	2	0
波浪		2	2		2	2	2	2	1	1	1	1	1	1	1	1	0	2	1	1
うねり	()	0	0			0	0	0	0	0	0	0	0	1	0	0	0	1	1	0
透明度	(m)	5.0	8.0			8.5	8.0	4. 1	4.0	2.5	2. 4	4. 1	5. 5	2.0	6. 1	8. 5	5. 2	3. 0	3. 0	4. 1
水色水流	()	6				4	5	5	7	10	12	10.5	5	14	16.0	5	6	14	7	6
水 深 水 水 温	(m) 0 m	11. 5 15. 8	15. 1	16. 0 16. 6		33. 0 14. 8	34. 0 17. 9	36. 5 18. 0	18. 5 18. 0	14. 0	13. 0 18. 7	19. 5 18. 0	22. 0 17. 3	6. 5 17. 9	16. 0 17. 6	22. 0 18. 9	10.0	13. 5 17. 3	7. 0 17. 2	16. 5 18. 2
/\ (\mathcal{C})	2 m	15. 8	15. 1	16. 5		14. 8	16.7	17.6	17. 1	16. 1	16. 6	17. 3	16.9	17. 9	17. 0	17.5	15. 4	17. 3	17. 2	18. 1
(0)	5 m	15. 4	15. 1	16. 5	17. 2	14. 6	15. 4	14. 9	15. 5	15. 4	15. 2	15. 5	15. 8	17. 7	15.8	15. 5	15. 1	17. 1	17. 0	17. 7
	10 m		15. 0	16.4	17. 2	14. 5	14. 9	14. 1	14. 4	14. 3	14. 6	14. 4	14. 7		14. 5	14. 5	15. 0	16. 9		17. 1
	20 m		14.8		16.7	14. 5	14. 5	14.0					13. 7			13.7				
	30 m					14.5	14.0	14.0												
	B-1m	15. 0	14.8	16.3	16.9	14.4	14.0	14.0	13. 9	14. 1	14. 3	13. 9	13. 7	17. 6	14. 1	13.7	15.0	16.6	16. 7	16. 6
DO	0 m	8. 67	8. 61	8.34	8. 82	8. 59	9.01	9. 95	10.14	11.72	11.05	10.67	8.94	9.37	8. 29	8. 23	8.60	9.02	8.94	8. 25
(mg/l)	2 m	8. 68	8. 62	8. 37	8. 86	8. 59	9. 22	10.10	10.41	12. 13	11.06	10.77	8. 93	9.43	8. 35	8.46	8. 77	8. 99	8.96	8. 28
	5 m	8.71	8. 62	8. 40	8. 81	8. 62	8.97	9.00	9. 75	9. 97	9.43	9. 58	9.03	8.97	8. 16	8.93	8.63	8.90	8.62	8.30
	10 m	8. 30	8. 61	8. 41	8. 75	8. 59	8.96	8. 23	8. 85	8. 23	8. 16	8. 67	8.71		8. 62	8.60	8.46	8. 57		7. 95
	20 m		8. 49		7.64	8. 56	8.93	8.00					6.31			8.01				
	30 m					8. 53	8. 27	7. 97												
	B-1m		8. 47				8. 19	7. 90	7. 43					8.95	7.62			8. 21	8. 39	7. 75
塩 分	0 m	32. 55	32.66		31. 43	32. 83	31.98	30.62	30. 13	28. 97	29. 05	30. 52	31.84	31. 05	31. 66	31.97	32. 68	31. 33	31. 07	31. 93
(psu)	2 m 5 m		32.66			32. 82	32. 27	30.68	30.79	30. 59	31. 05		31. 92	31. 08 31. 23	31. 61	31. 84 32. 27	32.56	31. 37	31. 08	31. 93
	10 m		32. 66 32. 66		31. 44	32. 83 32. 87	32. 73 32. 83	32. 23 32. 60	31. 80 32. 36	31. 70 32. 38	31. 94 32. 24	31. 97 32. 37	32. 14 32. 33	31. 23	32. 02 32. 48	32. 51	32. 58 32. 62	31. 54 31. 67	31. 37	31. 93 32. 07
	20 m	32.01	32.67	32.21	31. 88		32.87	32.66	32.50	52.50	52.24	32.51	32. 52		52.40	32. 65	52.02	51.01		52.01
	30 m		02.01		01.00	32. 90	32. 88	32. 67					02.02			02.00				
	B-1m	32.64	32.67	32. 27	31. 81	32. 92	32. 88	32. 68	32. 58	32. 46	32. 34	32. 56	32. 51	31. 26	32. 60	32.66	32. 59	31. 75	31. 50	32. 12
NH ₄ -N	0 m	0.40	0.01	0.02	0.00	0. 08	0.03	0.00	0.00	1. 33	1.38	0.01	0.00	0.00	0.00	0.09	0. 52	0.00	5. 13	0.06
$(\mu \text{mol/l})$	5 m	0.46	0.02	0.02	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.02	0.18	0.00	0.04	0.00	0.74	0.00	0.83	0.18
	B-1m	0.49	0.18	0.10	0.63	0.08	0.12	0.44	0. 26	0.48	0.69	0.52	2.00	0.00	0.07	0.00	0.36	0.07	0.37	0.56
NO ₂ -N	0 m	0.04	0.02	0.03	0.03	0.07	0.01	0.03	0.03	0.60	0. 27	0.08	0.01	0.09	0.05	0.02	0.03	0.03	0.33	0.05
$(\mu \text{mol/l})$	5 m	0.03	0.02			0.06	0.00	0.03	0.02	0.04	0.01	0.03	0.03	0.08	0. 13	0.01	0.02	0.02	0.10	0.04
	B-1m	0.03	0.04	0.03		0.03	0.03	0.02	0.05	0.08	0.06	0.08	0.09	0.08	0.01	0.02	0.02	0.03	0.06	0.03
NO ₃ -N	0 m	1. 15	0.36			0. 26	0.17	0.32	0. 29	3. 23	10.36	0.45	0.09	0. 25	0.37	0.30	0.52	0.14	2. 30	0. 20
(µmol/l)	5 m	1. 72	0. 26			0. 23	0.10	0. 28	0.58	0. 29	0.36	0.37	0.39	0.24	0. 91	0.38	0.70	0. 12	0.64	0. 21
PO - P	B-1m	1.48	0. 32			0. 13	0.26	0.32	0. 37	0.58	0.97	0.90	0. 56	0. 26	0. 20	0.33	0.82	0.14	0. 39	0. 26
PO ₄ -P (µmol/l)	0 m 5 m	0. 10 0. 14	0. 10 0. 13			0. 10 0. 10	0. 10 0. 04	0.00	0.03	0. 03 0. 01	0. 29	0.02	0.02	0.05 0.03	0. 07 0. 12	0. 15 0. 05	0. 13 0. 13	0.04	0.05	0.11
(μιΟ1/1)	B-1m	0. 14	0. 13				0.04	0.04		0.01	0.02	0.03	0.17	0.03	0. 12	0.05	0. 13	0.04	0.05	0.14
クロロフィル	0 m	0. 14	0. 12		1	1. 01	0.12	0.17		5. 02	4. 84	3. 61	1. 20	3. 29	0.05	0. 09	0.17	5. 13	2. 60	1. 40
(μg/l)	5 m	0.92	0.79			1. 09	0.11	0. 45		1. 35		1. 11	0. 27	2. 29	0.40	0. 18	0.61	2. 38	2.34	0.50
4.0.9	B-1m	1. 12	0.77			0.83	0.53	1. 18	2. 81	2. 62	2. 28	2. 34	2. 25	1. 43	0. 52	1.54	0. 26	3. 28	1. 17	0.82
フェオフィチン	0 m	0. 26	0.31	0. 47	1. 48	0.36	0.15	0. 16		1.74	1. 39	0.71	0. 13	0.18	0. 29	0.15	0.08	0.49	0.34	0. 16
(µg/l)	5 m	0. 29	0. 25			0. 37	0.07	0. 20		0.90	0.49	0. 29	0.02	0.06	0. 24	0.08	0.30	0.00	0.17	0.06
	B-1m	0.49	0.38	0.43	0. 55	0. 37	0.27	0.57	0.86	0.70	0.76	0.48	0. 69	0.18	0. 26	2. 37	0.13	0.16	0.13	0.17

海域・年月								戊	、島湾、安	芸灘, 備	後攤北部	ß	令和4年	6	月					
調査点	番号	1	2	4	6	7	13	15	17	18	19			24	33	34	35	36	37	38
	緯度	34° 12'						34° 18'				34° 19'		34° 23'		34° 14'		34° 22'	34° 25'	34° 24'
	経度	132° 36'	132° 47'	133° 07'	133° 21'			132° 22'					132° 31'			132° 27'	132° 33'	133° 23'	133° 25'	133° 14'
調査日		2	2	2	2	2	1	1	1	1	1	1	1	2	1	1	1	2	2	2
時 刻		8:52	9:23	10:19	11:45	15:06	14:09	11:46	10:56	10:35	9:59	9:45	9:22	12:17	12:28	11:18	8:49	12:00	12:33	11:11
天 候		В	В	В	В	В	BC	0	0	0	0	0	0	В	0	0	0	В	В	В
気 温	(\mathcal{C})	19. 4	19.6	21.9	21.9	20.7	21.0	20.4	20.5	20.6	20.6	20.7	20.3	22.0	22.1	21.5	21.1	22. 1	21.8	22. 2
雲 形		Cu	Cu	Cu		Cu	As	As	As	As	As	As	As		As	As	As		Cu	Cu
雲 量		2	1	1	0	1	7	10	10	10	10	10	10	0	10	10	10	0	1	1
風向		SSE	SE	SW	S	SSW	SSE	SSW	SSW			SSW	NW	SSW	SSW	ESE	ENE	SSW	S	S
風力		0	0				0	3	2	2	3	2	0	3			0	2	4	3
波浪		1	0				0	1	1	1	1	1	1	1	0	0	1	1	2	1
うねり	()	0	0				0	0	0	0	0	0	0	0	0	0	0	0	0	0
透明度	(m)	4. 2	7.5				9. 4	2. 9	3. 3	2. 4	2. 4			2.5	3.9		5. 0 7	3. 5	3. 2 9	2.6
水色水深	(m)	8 12. 5	31.0		22.5		33.0	12 36. 0	10 17. 5	12 13. 0	15 12. 5	19.0	6 22. 0	7.5	8 24. 5	20.0	10.5	12 15. 5	8. 5	18. 0
水温	0 m		17. 6		20. 3	17.1	20.8	20. 5	20. 2	20. 5	21. 5	21. 3	20. 2	20. 9	19.8	22. 4	19. 3	21. 1	20. 3	20. 4
(°C)	2 m		17. 4		20. 3	17.1	20. 0	20. 3	18. 3	20. 5	20. 1	20. 0	18. 5	20. 9	19. 6	20. 7	18. 5	20. 2	20. 3	20. 4
(- /	5 m		17. 4		20.0	17.0	18. 0	18. 7	17. 0	17. 3	16. 9	17. 3	17. 4	19. 4	18.8	17. 4	17. 6	19. 6	19. 3	20. 1
	10 m		17.3		19.7	17.0	17. 1	16.6	16. 1	16. 1	16.0	16.0	16. 4		17.1	15.9	17. 4	19. 4		19. 9
	20 m		17.3	18.6	19.5	17.0	16.4	15.7					15. 1		16.0	14. 9				
	30 m		17. 2			17.0	15.7	15.6												
	B-1m	17. 3	17. 2	18.6	19.5	17.0	15.5	15.7	15.7	15.5	15.8	15.6	15.0	19.3	15.9	15.1	17.5	18.6	19. 1	19. 4
DO	0 m	8. 11	8. 13	7.76	8. 59	8. 16	8.49	11.06	10.80	11.71	13.37	10.89	9.36	10. 18	9. 13	8.64	7. 98	9. 23	8. 23	7.65
(mg/1)	2 m	8.04	8. 16	7.83	8. 56	8. 17	8.62	11. 18	10.04	11. 92	13.06	10.30	9.32	10.07	9. 12	8.84	7. 99	9.52	8. 27	7.68
	5 m	8.01	8. 18	7.89	8. 35	8. 18	8.80	10.31	9.06	9. 12	8.08	8.94	8. 29	8. 17	9. 38	9. 20	8. 15	9. 32	8. 45	7. 69
	10 m		8. 13		8. 06		8.83	8. 40	8. 15	8. 17	7.51	7. 77			8. 84	8.85	7. 90	8. 46		7.62
	20 m		8.06		7. 81		8. 25	7. 30					5. 52		7. 55	5. 42				
	30 m		8. 03		7.01	8. 18	7.44	6.58	C C0	F 00	6 60	C 40	5.00	0.00	7.00	7 11	7.00	7 47	7 01	7 07
塩 分	B-1m 0 m		8. 03 32. 64		7. 81		7. 24 31. 62	6. 64 28. 46	6. 63 28. 72	5. 32 27. 68	6. 69 26. 29		5. 06 30. 71	8. 00 31. 42	7. 32 30. 55	7. 11 30. 17	7. 92 32. 44	7. 47	7. 01	7. 37
(psu)	2 m		32.62		31. 72		31. 73	28. 65	30. 98		28. 62			31. 54	30. 58		32. 60	31. 51	31. 49	31. 97
(pou)	5 m		32.63		31. 76		32. 38	30. 38	31. 78	31. 63	31. 58	31. 82	32. 07	31. 66	30. 80		32. 79	31. 59	31. 60	32. 00
	10 m		32.63		31. 79		32.62	32. 36	32. 25		32. 17	32. 27			32. 50	32. 37	32. 79	31.66		32. 01
	20 m		32.65	32. 29	31. 83	32. 76	32.82	32. 43					32. 41		32. 65	32.48				
	30 m		32.65			32. 76	32.79	32. 55												
	B-1m	32.65	32.65	32. 29	31. 83	32. 76	32.78	32. 57	32.54	32. 33	32. 21	32. 49	32. 45	31. 67	32. 66	32.47	32. 79	31.89	31.61	32.07
NH ₄ -N	0 m	0.06	0.00	0.03	0.04	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0. 20	0.00	0.00	0.00
$(\mu \text{mol/l})$	5 m		0.07	0.05	0.05		0.22	0.7	1.06	5. 27	0.93			0.00	1. 13	2.02	0.06	0.00	0.00	0.00
	B-1m		0.06		0.02	0. 93	0.07	0.00	0.00	0.10	0.00	0.00		0.00	0.06	0.00	0.88	2. 27	0.00	0.00
NO ₂ -N	0 m		0.08				0.13	0.05			0.33			0.05	0.04	0.05	0.08	0.04	0. 19	0.06
(µmol/l)	5 m		0.06				0.08	0.03		0.03	0.05	0.05		0.04	0.04	0.08	0.08	0.03	0.07	0.05
NO ₃ -N	B-1m 0 m		0. 05 0. 16		0.06		0.17	0.11	0.13	0. 26	0. 08 6. 22	0.06		0.06	0. 10	0.13	0. 10	0.04	0.05 0.96	0.05
(μmol/l)	5 m		0. 10		0. 22		0. 16	0. 40	0. 21		0. 43	0. 34		0. 22	0. 25		1. 13	0. 22	0.33	0. 24
(part/1/1/	B-1m		0.32		0. 21		0. 10	0. 17	0. 23	0. 25	0. 43	0. 24		0. 20	0. 10	0. 31	0.76	0. 22	0. 27	0. 24
PO ₄ -P	0 m		0.10		0.05		0. 17	0. 01	0.01	0.00	0.06			0.04	0.04	0. 00	0.34	0.09	0. 14	0. 97
(μmol/l)	5 m		0. 22		0.07		0.12	0.01	0.10		0.15			0.07	0.12		0.30	0.07	0.14	0.24
	B-1m		0.20				0.36	0.38			0.47			0.15	0.44	0.64	0.35	0.13	0.11	0. 26
クロロフィル	0 m	0.41	1.09	0.81	3. 03	0. 85	0.47	0. 28	2. 46	3. 78	16. 79		0. 26	6. 85	1.62	1.48	0.70	3. 23	8. 47	2. 29
$(\mu g/l)$	5 m	0.81	0.75	0.86	3. 47	0. 97	0.68	0.88	1. 49	1.54	4.64	3. 01	0.66	4.65	2. 13	2.70	0.61	2. 98	3.61	1.50
	B-1m	0.11	0.58	1.02	0.88	0.62	0.57	0.54	0.30	1. 11	1.56	0. 57	0.41	3. 76	0. 59	1.03	0.90	1.87	4.05	1.41
フェオフィチン	0 m	0.35	0.60	0.42	1. 27	0.36	0.17	0.20	0.73	1.12	2.71	1. 95	0.08	2.54	0.73	0.54	0.48	0.89	4.66	0.39
$(\mu g/l)$	5 m	0.65	0.37	0.47	1. 59	0. 43	0.18	0.37	0.44	0.41	1.01	0.45	0.21	1. 17	0.86	0.93	0. 56	0.81	0.94	0.42
	B-1m	0.09	0.36	0.57	0.53	0.45	0.34	0.32	0.17	0.90	0.66	0.42	0.38	0.92	0.54	0.65	0.68	0.66	1.15	0.55

元	海域•年月								戊	高湾.安	芸灘,備	後攤北部	Σ.	令和4年	7	月					
接っていまった できらい できらい できらい できらい できらい できらい できらい できらい			1	2	4	6	7	13									34	35	36	37	38
1	W-JEL/III																				
元 は、													l			l					
大きいっしい は	調査日			4				1	1	1	1		1	1	4	1	1	1	4	4	4
***	時 刻		16:05	15:36	14:43	12:43	9:33	13:38	11:31	10:33	10:18	9:46	9:31	9:07	12:08	12:15	10:58	8:30	11:52	12:22	13:42
照常 ・	天 候		С	0	0	0	0	В	В	В	В	В	В	В	R	В	В	В		R	С
思しい いっぱ いっぱ いっぱ いっぱ いっぱ いっぱ いっぱ いっぱ いっぱ いっ	気 温	$(^{\circ}\!\mathbb{C})$	24. 7	25. 2	25. 9	27.0	23.5	29. 1	29. 1	29.4	29.7	28. 3	28. 4	27.5	26. 1	30.3	30.3	27.5	25. 9	26.3	27.5
Mathematical Mat	雲 形		Cu	Cu	Cu	St	St	Cs	Cs	Sc	Sc	Sc	Sc		St	Cs	Cs		St	St	Cu
接。	雲 量		9	10	10	10	10	3	2	2	1	1	1	0	10	2	1	0	10	10	9
接いらい は	風向		ESE	Е	SE	ENE	ENE	S	SSW	SSW	SW	SW	SW	WSW	NE	S	WSW	ESE	ENE	ENE	Е
	風 力		3	0	3	3	3	2	3	2	2	2	2	0	2	3	0	0	3	3	3
振音響度 (m) 8 5.0 6.6 8 5.2 8.3 8 7.8	波浪		0	0	1	1	1	1	1	1	0	0	1	1	1	0	1	0	1	1	1
*** *** *** *** *** *** *** *** *** **	うねり		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
**************************************	透明度	(m)			5.2			8.5	4.0												
*** *** *** *** *** *** *** *** *** **																					
Cease Ceas																					
1																					
10	(C)												l								
			l												24. 0	l				20.4	
No. No.			l		22.0					13.1	20.0	20.1				21.2		20.0	20. 1		20.0
						21.0							10.0	10.0			10.0				
Decision Decision Decision T.65 T.65 T.65 T.65 T.72 T.75 T			20. 9		22. 4	24. 3				18. 6	19. 4	18. 9	18. 3	17.9	24. 0	19. 4	17. 9	20.6	22. 4	25. 3	24. 5
5 m 7.77 7.53 7.19 7.72 7.58 7.99 7.72 7.58 7.99 7.80 7.60 7.50 7.50 7.60	DO	0 m	7.65	7. 63		7. 71	7. 53			8. 51							7.81	6. 98			
10 m 7. 21 7. 48 7. 19 6. 90 7. 58 8. 32 6. 86 5. 61 6. 69 5. 89 8. 6. 35 7. 59 7. 59 7. 50 7. 50 7. 50 8. 55 6. 6. 55 6. 6. 65 6. 60 6. 60 7. 50 7.	(mg/l)	2 m	7. 67	7. 57	7. 19	7. 75	7. 58	7.72	8. 51	8. 15	8. 13	9. 17	8. 87	7.80	10.02	7. 56	7.45	7. 13	8.05	8. 59	6. 92
20m		5 m	7. 77	7. 53	7. 19	7. 72	7. 58	7. 93	7.81	7.60	7. 54	7. 16	7.60	7. 90	6. 79	7. 23	7.26	7.41	7. 27	7. 29	6.71
		10 m	7. 21	7.48	7. 19	6. 90	7. 58	8.32	6.86	5. 61	6. 69	5. 98	6. 35	7. 59		7. 63	7.58	6. 55	6.05		6.64
B-Im 7.12 7.37 7.15 6.25 7.52 6.41 5.78 4.64 3.68 5.05 4.13 3.49 6.22 4.42 3.87 6.61 5.52 6.91 6.43 4.42 4.4		20 m		7.41		6. 25	7. 53	7.88	6.03				2. 22	4. 11			4.30				
		30 m		7.05			7. 51	7. 19	5.80												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		B-1m	7. 12	7. 37	7. 15	6. 25	7. 52	6.41	5. 78	4.64	3. 68	5. 05	4. 13	3. 49	6. 22	4. 42	3.87	6. 61	5. 52	6. 91	6. 43
S m 32.56 32.60 32.26 31.61 32.70 32.43 31.94 32.11 32.03 31.61 31.89 32.15 31.60 31.91 32.29 32.54 31.64 31.52 31.94 32.01 32.01 32.03 32.28 32.36 32.37 32.38 32.37 32.38	塩 分					31. 60				30. 99			30. 43								
10 m 32.60 32.60 32.60 32.29 31.73 32.71 32.56 32.42 32.40 32.23 32.28 32.36 32.57 32.43 32.53 32.58 32.58 31.76 32.72 32.80 32.63 32.78 32.63 32.78 32.40 32.52 31.83 32.52 32.52 31.63 32.50 32.58 32.50 32.5	(psu)																				
20 m 32.61 32.76 32.77 32.80 32.62 32.80 32.63 32.80 32.63 32.80 32.63 32.80 32.63 32.80 32.8															31.60					31. 52	
Same			32.60		32. 29					32. 40	32. 23	32. 28				32. 34		32. 58	31. 76		31.94
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						31.70							31. 89	32. 33			32. 38				
$ \begin{array}{c} NH_4-N \\ NH_4-N \\ NO \\ MD \\ NO \\ MD \\ NO \\ MD \\ NO \\ NO \\ MD \\ NO \\ N$			32 60			31 75				39 57	39 43	39 43	39 59	39 59	31 63	32 50	32 61	32 50	31 85	31 53	32 03
	NH ₄ -N																				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(μmol/l)	5 m	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1. 17	0.00	0.00	0.00	0.00	0.17	0.00	0.05
(μmol/l) 5 m 0.06 0.32 0.17 0.18 0.41 0.03 0.03 0.01 0.04 0.06 0.07 0.10 0.04 0.06 0.06 0.06 0.13 0.05 0.03 0.07 0.08 NO ₃ -N 0 m 0.21 0.25 0.46 0.05 0.54 0.24 0.24 0.24 0.24 0.21 0.21 2.65 0.21 0.36 0.14 0.24 0.25 1.46 0.28 0.26 0.30 (μmol/l) 5 m 0.24 0.33 0.12 0.13 0.04 1.00 0.71 0.78 1.26 0.87 0.47 1.18 0.82 0.27 0.94 0.71 0.86 0.40 0.27 0.35 PO ₄ -P 0 m 0.18 0.12 0.18 0.02 0.21 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.0		B-1m	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2. 23	4. 45	1.40	3. 36	4. 11	0.00	4. 00	2.75	0.00	0.00	0.00	1. 41
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NO ₂ -N	0 m	0.11	0.22	0.19	0. 19	0.48	0.04	0.04	0.03	0.06	0.41	0.05	0.05	0.01	0.06	0.06	0. 22	0.04	0.05	0.13
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(\mu \text{mol/l})$	5 m	0.06	0.32	0.17	0.18	0.41	0.03	0.03	0.01	0.04	0.06	0.07	0.10	0.04	0.06	0.06	0.13	0.05	0.03	0.07
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		B-1m	0.24	0.33	0.12	0.13	0.43	1.17	1.49	1.18	0.77	0.43	1. 19	1.37	0.05	0.40	0.41	0.15	0.06	0.03	0.08
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NO ₃ -N	0 m											0.21								0.30
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(\mu \text{mol/l})$		l													l					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-															l					
#####################################	(µmol/l)		l										l			l					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	/mm ⁻⁷ /·l																1				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(μg/ I)												l			l					
(µg/l) 5 m 0.16 0.13 0.11 0.00 0.27 0.07 0.30 0.77 0.64 1.74 1.59 0.79 0.80 0.11 0.33 0.28 1.30 1.02 0.23	フェオフィチン																				
	(μg/l)												l								
													l			l					

海域•年月								垃	.島湾、安	芸灘,備	後攤北部	В	令和4年	8	月					
調査点	番号	1	2	4	6	7	13	15	17	18	19			24	33	34	35	36	37	38
,,	緯度	34° 12'				34° 07'		34° 18'				34° 19'		34° 23'		34° 14'			34° 25'	
	経度		132° 47'										132° 31'		l			133° 23'		
調査日		2	2	2	2	2	1	1	1	1	1	1	1	2	1	1	1	2	2	2
時 刻		15:38	15:08	14:13	12:30	9:38	10:10	11:55	13:28	13:43	14:13	14:27	14:50	12:00	11:17	12:40	8:45	12:17	11:47	13:27
天 候		ВС	BC	BC	BC	ВС	BC	BC	BC	BC	В	ВС	ВС	BC	ВС	В	В	BC	BC	BC
気 温	(\mathcal{C})	28. 9	30. 2	30.7	31.1	27.5	30.5	30. 1	31.0	30. 5	31.9	31.1	30.7	30.7	30.5	31.1	29. 7	30.4	30.7	30. 9
雲 形		Cu	Cu	Cu	Cu	Cu	Ac	Ac	Cu	Cu	Cu	Cu	Cu	Cu	Ac	Ac	Ac	Cu	Cu	Cu
雲 量		3	3	4	4	3	3	3	3	3	3	3	3	5	3	1	2	4	5	5
風向		SSW	S	SW	SW	ENE	NNW	S	SSW	SSW	SW	S	SW	SW	S	SSW	ENE	SW	SSW	SSW
風 力		2	0	3	0	0	0	3	3	3	4	3	3	2	3	3	0	0	2	2
波 浪		1	0	20	0	1	1	1	1	1	1	2	2	1	1	1	0	1	1	1
うねり		0	0	5. 5	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0
透明度	(m)	3. 0		7.0	2.5			4. 5	3. 5	3. 2	2.8		4.0	2.3	4.5		6.5	2.5	1.8	3. 0
水 色		7			16			8	9		10	9	8	10	8		7	6	18	9
水深	(m)	11.0			20.5	48.0	35.0	40.5	18.0	13. 5	12. 5	19.0	21.0	7.0	16.0	21. 5	10.0	15. 0	8.0	18. 0
水 温	0 m		25. 3		28. 2	23.9	28. 1	29. 2	29. 4	29. 5	28. 9	29. 1	28. 5	30. 2	28. 4	29. 1	25. 7	28. 1	28. 9	28. 9
(℃)	2 m			26. 1	27. 9 27. 7	23.8	26. 2	27.0	26. 0 23. 4	29.3	28. 2 23. 7	28. 9	27. 3	28. 8 27. 2	27. 1 23. 7	28.1	25.3	27. 6 27. 2	27. 5 27. 0	28. 8 28. 4
	5 m				27.7	23.4	24. 4 23. 9	23. 8 22. 3	23. 4	23. 8 22. 3	23. 7	24. 7 22. 4	24. 4 22. 7	41.2	23. 7	24. 8 22. 4	24. 3 23. 9	27. 2	21.0	28. 4
	20 m		23.8		26.3		22. 3	21.8	22.0	22.3	22.2	22.4	20. 5		23.0	21. 1	25.5	21.1		20. 1
	30 m		23. 8		20.3	23. 2	21.6	21. 7					20.0			21.1				
	B-1m				26. 4		21.6	21. 7	21.5	21.7	21.9	21. 1	20.5	26. 9	21.9	21. 1	24. 1	26. 1	26.8	27. 6
DO	0 m				8. 35		7. 53	8. 52	10.39	9. 57	10. 96	9. 92	7. 71	11. 00	7. 49		6. 68	9. 43	11. 14	6. 95
(mg/l)	2 m	8.36	7.04	6.61	7. 93		7. 68	8. 37	9. 27	9. 62	10.35	10.10	7. 95	11. 20	7. 56	7. 10	6. 81	7. 38	8. 50	6. 97
	5 m	7. 26	6. 97	6.61	7. 01	6. 73	7.61	7. 13	6. 18	6. 80	5. 92	7.85	7. 57	6. 91	4. 57	6.49	7. 00	6. 56	5. 13	6.72
	10 m	6.41	6.84	6.64	6. 33	6.71	7.51	5. 48	5. 57	4. 98	3. 25	4.04	3. 39		6. 41	4.95	5. 75	6. 58		6. 22
	20 m		6.71	6.52	4. 36	6. 70	6.92	4. 63					0.01			3.15				
	30 m		6. 62			6.70	5. 57	4.50												
	B-1m	6.41	6.64	6. 52	4. 39	6. 68	5.54	4. 48	3. 29	2. 59	2.39	1.54	0.01	5.61	2. 29	3.02	6.70	5. 17	4. 34	6.05
塩 分	0 m	32.03	32. 42	31.99	31. 23	32. 44	29. 12	27.43	26. 23	26. 72	26.84	27.40	29.69	30. 32	28. 26	29.53	32.06	30.90	30. 43	31. 47
(psu)	2 m	31.90	32. 36	31.99	31. 28	32. 45	31. 58	29. 22	29. 49	26.74	27. 54	27.41	30.02	30. 58	28. 81	29.82	32.05	31.01	30. 90	31. 49
	5 m				31. 33		32.33	31.66	31.66	31. 34	30. 82	30. 56	31. 35	31. 15	31. 13		32. 27	31. 17	31. 08	31. 48
	10 m				31. 40		32.39	32. 26	32. 12	32. 07	31. 86	31. 83	31. 91		32. 19		32. 30	31. 52		31. 50
	20 m		32. 42		31. 60		32. 57	32. 37					32. 35			32. 42				
	30 m		32.34		01 50	32. 53	32.65	32. 40	00.00	00.00	00.01	00.04	00.05	01 07	00.00	00 41	00.00	01 64	01 10	01 50
NH ₄ -N	B-1m 0 m				31. 59 0. 00	32. 54 0. 00	32.66 0.00	32. 41 0. 00	32. 33 0. 00	32. 22 0. 36	32. 01 0. 00	32. 34 0. 00	32. 35 0. 00	31. 27 0. 00	32. 38 0. 00	32. 41 0. 00	32. 26 0. 00	31. 64 0. 00	31. 13 0. 75	31. 56 0. 06
(μmol/l)	5 m				0.00			0.00	0.00		0.00			0.00			0.00	0.00		0.00
•	B-1m		0.00		0. 10		0.08	0.00	0.00	1. 26	1.04	0.00	3. 58	0.00	3. 34	0.00	0. 97	0.07	0. 09	1. 08
NO ₂ -N	0 m						0.03	0.06		0. 24	0. 12			0.01	0. 02		0.07	0.04	0.63	0.13
(μmol/l)	5 m						0.05	0.12	l		0.17	0.00	0.01	0.05	1. 16		0.01	0.04	0. 25	0.16
	B-1m	0.86	0.76	0.97	0.09	1. 05	1. 11	0.44	0.72	1.00	1.02	0. 54	0.51	0.09	0. 91	0.69	0.41	0. 19	0. 20	0. 27
NO ₃ -N	0 m	0.37	0.46	0.87	0. 24	0. 76	0.27	0. 23	0.33	0.47	0. 28	0. 19	0. 26	0.13	0. 28	0.20	0.58	0. 22	1.34	0.34
$(\mu\text{mol/l})$	5 m	0.20	0.77	1.03	0. 32	0. 20	0.61	0.43	0.51	0. 22	0. 27	0.24	0.22	0.18	0. 97	0.24	0.42	0. 26	0.44	0.60
	B-1m	0.56	0.56	1.11	0. 24	0.70	1.22	5. 31	3. 34	4. 27	3. 26	6.60	1. 17	0.42	0.83	6.69	1. 26	0.32	0.42	0.81
PO_4 -P	0 m	0.01	0.15	0.24	0.36	0.21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.13	0.00	0.00	0.13	0.02	0.00	0.38
$(\mu \text{mol/l})$	5 m						0.05	0.14	0.07		0.00			0.14	0. 58		0.00	0.36	0.45	0.46
	B-1m							1.00				1. 16	1	0.39	0.74	0.88	0.46	0.52	0.66	0.56
クロロフィル	0 m							8.90	3. 44	3. 36	18. 11	5. 96	7. 38	6.31	11. 93		1.41	4.69	4. 49	1. 17
(μg/l)	5 m				2. 14			5. 21	4. 23		10.90		4. 17	4. 85	4. 33		1.86	3. 81	6.60	
7 17 18	B-1m				1.85			0.71	0.49	2.30			0.63	4.62	0.97		4. 88	4. 52	6. 40	2. 10
フェオフィチン	0 m				0.36			0.54	0.86	0.76	5. 51	1.81	1.30	2.58	1. 14	0.18	0.37	2. 25	2.47	0.43
(μg/l)	5 m						0.30	0.89	1.35		2.86		1. 27	2.34	0.43		0.55	1.95	3.04	0.54
	B-1m	0.57	0.52	0.45	0.64	0.35	0.59	0.33	0.37	1. 25	0.50	0.62	0.68	2.06	0.75	0.63	1.07	2.10	3. 59	0.69

海域•年月								戊	鳥湾. 安	芸灘, 備	後攤北部	В	令和4年	9	月					
調査点	番号	1	2	4	6	7	13	15	17	18	19			24	33	34	35	36	37	38
,,	緯度	34° 12'						34° 18'				34° 19'		34° 23'		34° 14'		34° 22'	34° 25'	34° 24'
	経度			133° 07'									132° 31'		l				133° 25'	
調査日		2	2	2	2	2	1	1	1	1	1	1	1	2	1	1	1	2	2	2
時 刻		16:28	16:00	14:54	13:05	10:01	14:01	11:52	10:51	10:35	10:04	9:50	9:19	12:34	12:43	11:14	8:53	12:50	12:17	14:03
天 候		R	R		BC	BC		0	0	С	С	С	С	BC	0	0	0	BC	BC	С
気 温	(\mathcal{C})	24. 9	25.0	29.0	28.7	26. 1	27. 2	27.7	28. 7	28.7	27. 9	27.7	27. 3	28. 2	28. 1	27.7	27.5	28. 3	28. 3	29. 4
雲 形		Cu	Cu	St	Cs	Cs	St	St	St	St	St	St	St	Cs	St	St	St	Cs	St	St
雲 量		10	10	10	5	6	10	10	10	6	9	9	9	6	10	10	10	4	6	8
風向		ENE	ESE	ENE	Е	NE	SSE	Е	ENE	ENE	NE	NE	NNW	ENE	NW	NW	ENE	ENE	Е	NE
風 力		4	5	2	4	4	2	2	2	2	3	2	3	4	0	0	0	4	3	2
波 浪		1	1	1	1	1	0	1	1	1	1	1	1	1	0	0	0	1	1	1
うねり		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
透明度	(m)	4.0	5.0	5.5		6.5	6.0	4.0	3.0	1.8	2. 3		4. 5	3.5	4.5		7.0	4. 0	3. 5	4. 5
水 色		7	5			5	6	9	8		17	10		10	8	6		10	10	6
水深	(m)	12.0	30.0			41.5	34. 5	23. 5	19.0	14. 5	13. 5	19.5	22. 5	7.0	18.0	22.0	9.5	15. 0	7.5	18. 0
水 温	0 m	26. 4	26. 5		28.6	26. 5	26.6	26. 9	27. 2	27. 7	27. 5	27. 6	27. 7	28. 6	27.3	28.8	27. 3	28. 6	28. 9	28. 4
(℃)	2 m	26.3	26.4	27.7	28.6	26.3	26.5	26.6	27. 1	26.9	26. 7	27. 3	27.7	28. 5	26.4	27. 2	27. 2	28. 5	28.8	28. 4
	5 m	26. 3 26. 2	26. 3 26. 2		28. 6 28. 5	26. 1 25. 6	26. 2 25. 9	25. 9 24. 7	25. 7 24. 8	25. 5 24. 8	26. 1 24. 1	26. 1 24. 7	26. 4 25. 0	28. 5	25. 8 25. 4	25. 7 24. 8	26. 5	28. 5 28. 4	28. 6	28. 4 28. 4
	20 m		26. 2		28. 4	25. 3	24. 9	24. 7	24.0	24.0	24.1	24.1	23. 0		20.4	23. 7		20.4		20.4
	30 m		26. 1		20. 1	25. 3	24. 3	24.0					20.1			23.1				
	B-1m	26. 1	26. 1	27.6	28. 4	25. 3	24. 1	24. 5	24. 2	24. 0	24.0	23. 9	23.0	28. 4	24. 7	23.7	26. 3	28. 3	28. 6	28. 4
DO	0 m	6. 82	6. 29		6. 79	6. 10	7. 20	7. 98	8. 84	11. 79	10. 53	9. 75	8. 55	6.54	7. 16		6. 31	6. 86	5. 78	5. 58
(mg/l)	2 m	6. 83	6. 31	6.02	6. 81	6. 10	7.31	7.85	8. 77	10.64	9. 36	9.44	8. 64	6. 52	6. 10	6.31	6. 15	6.86	5. 80	5. 62
	5 m	6. 76	6. 22	6.00	6. 82	6. 08	7.03	6. 33	5. 73	5. 62	5. 27	5. 89	6.30	5. 66	5. 36	5. 26	6. 53	6.63	5. 30	5. 62
	10 m	6. 58	6.06	5. 99	6. 80	6.04	7. 12	4. 29	4. 48	3.46	0.97	3.03	3.47		4. 99	4.10		6. 20		5. 59
	20 m		6.07		6. 20	6.01	5.97	4.00					0.19			2.25				
	30 m		6.08			6.00	4.62													
	B-1m	6.07	6.08	5. 97	6. 11	6.00	3.84	4.01	2. 62	0.21	0.62	0.74	-0.02	5. 37	3. 26	1.96	5.71	5. 70	5. 19	5. 67
塩 分	0 m	32.03	32. 27	31.95	31. 43	32. 32	30.99	30. 15	29.69	27.08	28.91	29. 75	29. 62	30. 87	30. 21	29.71	32.11	31. 26	30. 91	31. 58
(psu)	2 m	32.04	32. 22	31.96	31. 44	32. 34	31. 24	30. 52	29.85	30.01	30. 12	30. 47	30. 36	30. 93	30. 87	30.98	32.12	31. 27	30.91	31. 58
	5 m		32. 30		31. 43	32. 37	31.67	31. 24	31. 23	31. 22	30.80		31. 18	31. 11	31.71	31.62	32. 20	31. 30	31. 04	31. 59
	10 m	32. 21	32. 32		31. 43	32. 46	32. 21	32.04	31.96	31. 79	31. 90	31. 75	31. 69		32. 09			31. 33		31. 59
	20 m		32. 32		31. 49		32. 42	32. 17					32. 04			32. 10				
	30 m		32.34		01 50	32. 52	32. 46	00 17	00.14	00.01	01.00	00.05	00.00	01 10	00.00	00.11	00.04	01 40	01.00	01 00
NH ₄ -N	B-1m 0 m	32. 27 0. 55	32. 34 0. 02		31. 50 0. 06	32. 52 0. 09	32. 48 0. 05	32. 17 0. 10	32. 14 0. 16	32. 01	31. 92 0. 20	32. 05 0. 14	32. 03 0. 20	31. 16 5. 93	32. 26 0. 24	32. 11 0. 08	32. 24 0. 51	31. 40 0. 10	31. 06 10. 37	31.69
(μmol/l)	5 m		0.02		0.00		0.12	0.00			0. 12	0. 14	0.09	3.54	0. 36		0.35	0. 10	9.85	2. 86
•	B-1m	0.71	0.06		0. 78	0. 15	0.05	0.00	l	2. 62	2. 08	0. 20	0.09	4. 46	2. 66	2. 91	1. 46	0.44	8. 69	2. 06
NO ₂ -N	0 m	0.63	1.06			1. 26	0.06	0.09	0.05		0.11	0.06		0.33	0. 19		0.12	0.12	0.52	0.41
(µmol/l)	5 m	0. 57	1.06			1. 16	0.06	0.13	l	0.09	0.06	0.06	0.05	0.19	0. 26		0.11	0.10	0.46	0.31
	B-1m	0.80	1.14	0.70	0. 12	1. 26	0.55	0.62	0.87	1.00	0.93	0.85	0.46	0. 21	1.87	0.82	0.30	0.14	0.42	0.24
NO ₃ -N	0 m	0.73	0.60	0.76	0. 21	1. 23	0.14	0.18	0. 13	1.46	1.08	0.24	0.43	1.26	0. 25	0.19	1.87	0.29	1.57	1. 10
$(\mu\text{mol/l})$	5 m	0.68	0.67	0.92	0. 16	1. 15	0.11	0.41	0. 33	0. 19	0.28	0.24	0.23	0.55	0.49	1.44	0.55	0.30	1.71	0.83
	B-1m	0.76	0.91	0.88	0.39	1.57	4.41	4. 22	6. 11	3.80	5. 61	5. 95	7. 98	0.56	1.86	6.87	1.20	0.37	1.50	0.69
PO ₄ -P	0 m	0.54	0.33	0.49		0.38	0.14	0.14	0.12		0.20	0.04		0.87	0.42	0.00	0.38	0.67	1.01	0.88
$(\mu \text{mol/l})$	5 m	0.34	0.34	0.66		0.37	0.48	0.38		0.37	0.39	0.49	0.53	1.07	0.46	0.53	0.39	0.64	1.08	0.83
	B-1m	0.42	0.34			0.45	1.03	0.87		2. 33	2.30		2. 13	1.14	1. 16			0.72	1. 19	0.78
クロロフィル	0 m	3. 96	2.06			2. 14	2.62	8. 90	3. 44	33. 59	18. 11	5. 96	7. 38	6. 31	11. 93		1. 41	4.69	4. 49	1. 17
(µg/l)	5 m	4. 01	2. 20		2. 14	2. 25	1.22	5. 21	4. 23		10.90		4. 17	4. 85	4. 33		1.86	3. 81	6. 60	1. 49
- 1- ·	B-1m				1.85	1.90	1.10	0.71	0.49	2.30			0.63	4.62	0.97		4. 88	4. 52	6. 40	2. 10
フェオフィチン	0 m	0.84	0.58		0. 36	0.46	0.16	0.54	0.86	7. 57	5. 51	1.81	1. 30	2.58	1. 14	0. 18	0.37	2. 25	2. 47	0.43
(µg/l)	5 m	0.68	0.57		0. 45	0.53	0.30	0.89	1. 35		2.86		1. 27	2.34	0. 43	0.52	0.55	1.95	3.04	0.54
	B-1m	0.57	0.52	0.45	0.64	0.35	0.59	0.33	0.37	1. 25	0.50	0.62	0.68	2.06	0.75	0.63	1.07	2.10	3. 59	0.69

海域•年月								広	、島湾,安	芸灘, 備	後攤北部	3	令和4年	10	月					
調査点	番号	1	2	4	6	7	13	15		18	19	20	21	24	33	34	35	36	37	38
,,	緯度	34° 12'				34° 07'		34° 18'				34° 19'		34° 23'		34° 14'		34° 22'	34° 25'	34° 24'
	経度	132° 36'		133° 07'			132° 21'						132° 31'					133° 23'	133° 25'	
調査日		4	4	4	4	4	3	3	3	3	3	3	3	4	3	3	3	4	4	4
時 刻		15:29	14:58	13:48	12:27	9:38	14:27	12:06	11:11	10:58	10:23	10:07	9:43	11:55	12:50	11:34	8:55	12:13	11:40	13:13
天 候		С	С	С	BC	BC	BC	BC	BC	ВС	BC	ВС	BC	ВС	BC	В	BC	BC	С	С
気 温	(\mathcal{C})	27. 3	24. 5	28. 4	28.3	26.2	27. 1	27. 1	25.9	26.7	25.8	25.5	24. 1	27. 5	26.9	27.0	25. 1	27. 9	26.7	28. 9
雲 形		Sc	Cu	Sc	Sc	Sc	Sc	Sc	Sc	Sc	Sc	Sc	Sc	Sc	Sc	Sc	Sc	Sc	Sc	Sc
雲 量		8	9	8	6	5	6	3	3	4	5	6	7	7	4	2	6	6	8	8
風向		SW	WSW	WSW	SSW	SW	SSE								S		Е	SW	S	WSW
風 力		3	3	4	2	4	2	0	0	0	0	0	0	0	2	0	1	2	3	4
波 浪		2	2	1	1	2	0	1	1	0	1	1	1	1	1	1	1	1	1	1
うねり		0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
透明度	(m)	3. 5	8	6.5	4.5	12	5	2.8	2. 3	2	1.5	2.5	3. 5	5	4	4. 5	4	3	3	2
水 色		7					6	9	13	19	20	9	9	6	7	6	6	7	11	12
水深	(m)	12.5			21.0		34. 5	36. 5	17. 5	13. 5	12.0	18. 5	21.0	5. 5	15.5	20.5	9.0	12. 5	6. 5	14. 5
水 温	0 m	25. 9	26.0		26.8	25. 5	26. 3	25. 5	25. 5	25. 6	25. 3	25. 6	25. 5	26. 5	26. 2	25. 8	25. 7	26. 6	26. 6	26. 4
(℃)	2 m	25.9			26.8		25. 7	25. 4	25. 5	25. 5	25. 4	25. 4	25. 5	26. 2	25. 7	25. 8	25. 6	26. 1	26. 4	26.3
	5 m	25. 8 25. 7			26. 3 26. 2	25. 4 25. 3	25. 3 25. 2	25. 3 25. 2	25. 4 25. 3	25. 5 25. 3	25. 3 25. 3	25. 3 25. 2	25. 2 25. 1	26. 0	25. 5 25. 3	25. 6 25. 4	25. 5	25. 9 26. 1	25. 9	26. 3 25. 9
	20 m		25. 7		26. 2		25. 2	25. 2	20. 3	20. 0	20. 0	20.2	25. 1		20. 0	25. 4		20. 1		20.9
	30 m		25. 7		20.0	25. 1	25. 2	25. 1					20. 1			20.2				
	B-1m	25. 7			26.0		25. 0	25. 1	25. 2	25. 3	25. 2	25. 3	25. 1	26. 0	25. 2	25. 1	25. 5	25. 9	26. 0	26. 1
DO	0 m	7. 45			8. 73		8. 28	10.38	10. 59	11. 79	9. 21	9. 28	8. 17	11. 01	7. 02	7. 83	7. 17	9. 84	9. 81	8. 35
(mg/l)	2 m	7. 47	6. 84		8. 74		8. 31	8. 62	10. 48	11. 87	7. 23	8. 81	8. 01	11. 30	7. 44	7. 62	6. 96	10.00	9. 79	8. 43
	5 m	7. 17	6. 76	6. 47	8. 69		7.96	5. 44	6. 59	6. 93	3. 86	7. 92	5. 51	9.63	4. 95	6.21	6. 28	9. 68	10.04	8. 50
	10 m	6. 10	6.40	6. 42	7. 57	6. 40	6. 21	5. 29	5. 06	3. 65	2. 52	4. 58	2. 75		3. 86	3.31		8.72		7.80
	20 m		6.40	6. 25	5. 25	6. 31	6.79	5.74					1. 36			3.76				
	30 m		6.38			6. 29	6.30	5.87												
	B-1m	6.03	6.38	6. 25	5. 25	6. 29	6.12	5. 85	2. 95	1.60	1.83	2. 78	1. 36	10.47	2. 76	3.88	5. 43	5. 25	9.43	5. 93
塩 分	0 m	32.04	32. 29	31.84	31. 11	32. 29	31.54	28.67	28. 09	27. 25	29. 17	30.41	30.85	30. 53	30.42	29.90	31. 98	30.62	30.48	31. 25
(psu)	2 m	32.04	32. 29	31.85	31. 13	32. 36	31.54	30. 54	29. 73	28.72	30.79	30.90	31. 20	30. 58	30. 59	31.01	32.01	30.69	30.51	31. 25
	5 m	32. 13	32. 29	31.85	31. 14	32. 39	31.81	31.71	31. 39	31. 24	31. 34	31. 19	31. 45	30. 98	31. 41	31.56	32.06	30.86	30.72	31. 26
	10 m	32. 26	32. 30	31.85	31. 19	32. 44	32.08	31. 93	31.65	31. 76	31.62	31. 59	31.61		31. 90	31.96		31. 12		31. 36
	20 m		32. 31		31. 38		32. 21	32. 16					31. 81			32.05				
	30 m		32. 31			32. 56	32. 33	32. 20												
NILI –NI	B-1m 0 m	32. 26 0. 00	32. 31 0. 41		0.00	32. 57 0. 00	32. 34 0. 00	32. 21 0. 03	31. 98 0. 00	31. 81 0. 11	0.00	31. 90 0. 00	31.81 0.00	30. 75 0. 00	31. 99 0. 00	32. 01 0. 00	32. 10 0. 42	31.39 0.36	30. 97 8. 36	31. 62 0. 00
NH ₄ -N (μmol/l)	5 m				0.00		0.00	0.00		0.11	0.00	0.00	0.00	-	0.00	0.00	0. 42	0.00	0. 47	0.00
(paritiva) 1/	B-1m	1. 16	0.00		4. 23		0.11	0.40		2. 09	1. 85	0.00	0.00	0.12	0.00	0.15	2.96	3. 53	0. 57	0.35
NO ₂ -N	0 m	0. 10					0.00	0.03		0.06	0. 33	0.00	0.06	0. 23	0. 03	0.00	0.06	0.14	1. 93	0. 28
(μmol/l)	5 m	0. 39					0.00	0.03		0.04	0.31	0.01	0.48	-	0. 29	0.06	0.46	0.03	0.44	0. 24
	B-1m	1. 19			0. 73		0.29	0.79		1.02	1. 15	1. 24	0.96	0.11	0.83	0.57	1. 19	0.64	0.20	1.38
NO ₃ -N	0 m	0. 15	0. 53		0. 24		0.26	0. 28	0. 24	0.55	1.68	0.21	0.39	0.42	0.30	0.22	1. 38	0. 28	3. 22	0.32
$(\mu \text{mol/l})$	5 m	0. 26	0.62	0.52	0. 27	1. 16	0.11	0.38	0.21	0.29	1. 99	0.21	3.71		2. 37	0.73	0.79	0.16	0.72	0.32
	B-1m	0.77	0.74	1.48	0.40	1. 21	0.24	1.04	7. 88	9. 23	7.65	8. 47	9.82	0.26	7. 07	3.95	1. 24	0.26	0.53	0.83
$\mathrm{PO_4}\text{P}$	0 m	0.31	0.47	0.85	0.06	0. 36	0.18	0. 17	0.02	0.24	0.31	0.07	0.46	0.01	0.49	0.03	0.50	0.14	0.14	0.52
$(\mu \text{mol/l})$	5 m	0.33	0.45	0.19			0.12	0.14		0.42	0.79	0.17	1. 11	-	0.78	0.71	0.55	0.10	0.08	0.35
	B-1m	0.65					0.17	0.55		2.11	1. 73	1.48	1.90	0.16	1. 39	0.99	0.71	0.92	0.09	0.35
クロロフィル	0 m	3. 12			1.65		1. 17	5. 15		13. 36	19.87	6. 48	6.03	3. 08	3. 32	1.73	2.04	3. 47	11. 47	7.63
$(\mu g/l)$	5 m	3. 14					4.61	9. 58		6. 19	15. 94	3. 69	6.33	-	10.70	5.84	4.66	9. 83	7. 99	8. 52
	B-1m	1. 79			5. 20		3.61	2. 43		2. 17	2.68	1.10	1. 12	5.95	1. 11	0.81	1.84	9. 17	9. 49	3.96
フェオフィチン	0 m	1. 39			0.89		0.66	2. 93		0. 26	0.00	1.36	0.53	0.49	0.86	0.42	0.78	1. 20	1.88	1. 28
(μg/l)	5 m	1.11	0.81				2.82	5. 28		1. 92	3. 93	0.33	0.34	- 1.00	2. 05	3.03	1.60	0.00	2. 82	0.76
	B-1m	0.63	0.67	1.24	1. 99	0.72	0.50	1.04	1.11	0.97	1.12	0.52	0.29	1.36	1. 15	0.65	1.38	0.96	1.75	0.16

海域•年月								広	島湾,安	芸灘, 備	後攤北部	ß	令和4年	11	月					
調査点	番号	1	2	4	6	7	13	15	17		19		21	24	33	34	35	36	37	38
,,	緯度	34° 12'						34° 18'				34° 19'		34° 23'		34° 14'		34° 22'	34° 25'	34° 24'
	経度			133° 07'			132° 21'						132° 31'		l				133° 25'	
調査日		2	2	2	2	2	1	1	1	1	1	1	1	2	1	1	1	2	2	2
時 刻		9:16	9:47	10:52	11:50	15:00	13:55	12:02	11:06	10:53	10:21	10:09	9:47	12:16	12:44	11:33	8:55	12:04	12:28	11:24
天 候		С	BC	В	В	В	С	0	0	0	0	0	0	В	С	0	0	В	В	BC
気 温	(\mathcal{C})	18.8	19.3	20.5	20.6	22.0	19.9	18.0	17.4	17. 1	17.0	16.7	17. 1	20. 9	18.8	17.9	17. 1	20.7	21. 1	21.9
雲 形		St	St	St	St	St	St	St	St	St	St	St	St	St	St	St	St	St	St	St
雲 量		7	3	2	2	2	8	10	10	10	10	10	10	2	9	10	10	2	2	3
風向		NNE	ENE	SE	ESE	ENE	NE	NE	ENE	NE	NNE	NNE	NNW	ENE	NE	N	NNW	ENE		
風 力		2	2	2	2	3	3	3	4	3	3	3	4	2	2	3	2	2	0	0
波 浪		1	1	1	1	1	2	2	1	1	1	2	2	1	1	1	2	1	0	0
うねり		0	0	0			0	0	0	0	0	0	0	0	0	0	0	0	0	0
透明度	(m)	5. 5	4. 4	7.9			5.5	5.9	4. 9	4	3. 1	4. 2	4. 4	2.8	3		4. 3	3. 1	2. 9	3. 4
水色		5					4	6	5		8	6	7	9	8	8	5	8	9	7
水深	(m)	10.5	29.0			30.5	34. 5	38. 0	18. 0	13. 5	12.0	18. 5	21.0	5.5	16.5	20.5	8.9	13. 0	7. 5	16. 5
水 温	0 m		22. 2		20.6		22. 1	21. 3	21. 2	20.6	21. 2	21. 3	21.5	20. 6	20.4	21. 2	21. 1	20. 9	21.6	21. 0
(℃)	2 m 5 m		22. 2 22. 2		20.5	22. 4 22. 3	22. 0 22. 0	21.3	21. 2 21. 2	20. 5 20. 7	21. 1 21. 5	21. 3 21. 3	21. 5 21. 5	20. 5 20. 4	20.4	21. 1	21. 0 21. 0	20. 9 20. 6	20. 7 20. 3	20. 7 20. 5
	10 m		22. 2		20. 3	22.3	22. 0	21. 3 21. 4	21. 2	20. 7	21. 5	21. 3	21. 5	20.4	20.4	21. 1	41.0	20. 6	20.3	20. 5
	20 m		22. 2		20.3		22.0	21. 4	21. 3	20.0	21. 0	21.4	21. 5		20.4	21. 1		20.4		20.5
	30 m		22.2		20.3	22. 2	22. 0	22. 0					21.0			21.1				
	B-1m		22. 2	21.8	20.3		22. 0	22. 0	21. 9	21.6	21.5	21. 5	21.5	20. 4	20.5	21. 1	21.0	20. 5	20. 3	19. 9
DO	0 m		6. 67		7. 05		7.04	7. 02	6. 82	6. 77	7. 17	7. 03	7. 01	6. 91	6. 22	7. 26	6. 82	6. 92	6. 53	7. 02
(mg/l)	2 m	6.84	6.66	6.84	7.04		7.03	7.03	6. 78	6. 77	7.10	7.04	7. 02	6. 92	6. 21	7. 26	7. 13	6. 93	6. 61	7. 09
	5 m	6. 83	6.67	6.83	7. 02	6. 76	7.01	7.01	6. 78	6. 73	6. 56	7.03	7.01	6. 83	6. 19	7. 28	7. 23	6.97	6. 60	6. 99
	10 m	6.81	6.66	6.80	6. 85	6.71	7.03	6. 96	6.76	6. 57	6.35	7.03	7.04		6. 17	7. 27		6.74		6.96
	20 m		6.65		6. 54	6. 69	7.03	6.90					7.09			7. 23				
	30 m					6. 70	7.04	6.88												
	B-1m	6.82	6.65	6.80	6. 54	6. 69	7.04	6.89	6. 61	6.36	6. 15	7.05	7.09	6.84	6. 11	7. 23	7. 22	6.71	6. 53	6.86
塩 分	0 m	32. 40	32. 48	32. 26	31. 49	32. 51	32.60	32.00	31.84	31.10	31.60	31.95	31.94	31. 49	31.65	32.12	32. 32	31. 56	31.03	32. 16
(psu)	2 m	32. 44	32. 49	32. 27	31. 49	32. 50	32.61	32.01	31.87	31. 13	31.62	31.97	31. 94	31. 51	31.66	32. 13	32. 36	31. 56	31. 27	32. 13
	5 m		32. 49		31. 51		32.61	32.01	31.86	31. 42	31. 93	31.99	31. 94	31. 49	31.66		32. 37	31. 48	31. 29	32. 14
	10 m		32. 49		31. 55		32.60	32. 11	31.89	31. 61	32. 07	32. 10	31. 95		31. 68			31. 54		32. 14
	20 m		32. 50		31. 61		32.61	32. 40					31. 97			32. 13				
	30 m		00.40	00.07	01 61	32. 57	32.60	32. 49	00.00	00.00	00.07	00.15	01 07	01 50	01.70	00.10	00.00	01 50	01 04	00.00
NH ₄ -N	B-1m 0 m		32. 49 0. 00		7. 91	32. 57 0. 03	32.60 4.78	32. 50 1. 19	32. 33	32. 08 6. 69	32. 07 1. 57	32. 15 1. 40	31. 97 1. 13	31. 50 8. 24	31. 70 6. 01	32. 13 0. 25	32. 38 1. 58	31. 58 5. 86	31. 34 26. 05	32.06 1.00
(μmol/l)	5 m				7. 76		0.00	1. 14	2. 43	4. 77	3. 42	2. 38	0.95	7. 91	4. 75		1. 45	6.71		1.00
•	B-1m		0.05		3. 11	0.00	0.52	0.46		4. 19	3. 24	1. 67	0. 87	7. 71	4. 90	0.00	0.88	6. 44	11. 25	1. 55
NO ₂ -N	0 m		2.05				1. 15	0.76			0. 17	0. 49	0. 77	0.70	0. 79		0.80	0.68	1.03	0.48
(µmol/l)	5 m	1.70	2.02	1.12	0. 67	1. 67	1.15	0.68	0.81	0.80	0.71	0.45	0.66	0.77	0.70	0.01	0.63	0.73	0.85	0.44
	B-1m	1.75	2.04	1.12	0.17	1. 79	0.27	0.84	0.86	0.91	0.57	0.34	0.57	0.70	0. 69	0.02	0.64	0.64	0.82	0.27
NO_3-N	0 m	2.51	1.80	1.34	1. 67	1. 91	0.89	1.13	1.57	3.08	1.51	1.50	1.59	1.62	1.72	0.33	2. 17	1.20	3.74	0.90
$(\mu\text{mol/l})$	5 m	2.00	1.84	1. 24	1.64	2. 19	0.97	1.06	1.69	1.88	2.81	1.44	1. 18	1.46	1. 47	0.23	1.54	1. 36	2.40	0.78
	B-1m	2.07	1.99	1. 22	0.48	2. 16	0.27	0.80	1.05	1.73	1.43	0.70	0. 93	1.35	1. 48	0.22	1.72	1. 19	2. 20	0.63
PO ₄ -P	0 m		0.61				0.53	0.54		0.80	0.36	0.58	0.86	0.75	1.05	0.75	0.86	0.86	1.44	0.55
$(\mu \text{mol/l})$	5 m		0.64				0.45	0.50			1.01	0.79	0.80		0.80		0.67	0.75	0.97	0.86
	B-1m		0.66				0.14	0.51		0.73	0.69	0.65	0.65	0.78	0.82	0.50		0.82	0.87	0.64
クロロフィル	0 m		0.79				1.53	2.53		1.65	6.66	3. 76	2.70	2.91	1.41	1.71	1.61	1. 92	1.74	2.79
(μg/l)	5 m		0.73				1.64	2. 55		2. 46	4. 39	3. 69	3. 05		1. 23	2.00		2. 02	1.96	2. 78
7 47.1.	B-1m		0.88				1.81	2. 33	2.58		3. 67	3. 35	2. 58	3. 89	1. 27		1. 74	2. 26	1.00	2. 26
フェオフィチン (μg/l)	0 m		0. 35 0. 37		0. 63 0. 62		0. 48 0. 40	0. 61 0. 61	0. 10 0. 00	0. 36 0. 14	0. 09 0. 23	0. 00 0. 20	0.08	0.00 0.36	0. 41 0. 67	0.84 0.89	0. 51 0. 56	0. 62 0. 67	0. 11 0. 55	0. 62 0. 69
(μg/ I)	5 m											l			l					
	B-1m	0.36	0.47	0.47	0.74	0.77	0.52	0.49	0.00	0.00	0.56	0.00	0.00	0.90	0.68	1.29	0.77	0.44	0.44	1.43

海域•年月								広	島湾,安	芸灘,備	後攤北部	В	令和4年	12	月					
調査点	番号	1	2	4	6	7	13	15	17		19			24	33	34	35	36	37	38
,,	緯度	34° 12'				34° 07'		34° 18'				34° 19'		34° 23'		34° 14'			34° 25'	
	経度			133° 07'									132° 31'	l						
調査日		2	2	2	2	2	1	1	1	1	1	1	1	2	1	1	1	2	2	2
時 刻		8:56	9:25	10:36	11:50	14:50	13:33	11:42	10:52	10:42	10:13	10:00	9:39	12:17	12:24	11:16	8:51	12:04	12:29	11:23
天 候		ВС	ВС	С	BC	ВС	BC	С	С	0	С	С	ВС	ВС	ВС	С	С	BC	BC	BC
気 温	(\mathcal{C})	9. 9	9.7	9.7	10.7	11.9	11.1	10.7	9.8	10.1	9.8	9. 9	10.3	10.0	13.3	10.3	14. 3	11.5	12. 1	10.9
雲 形		St	St	St	St	St	St	St	St	St	St	St	St	St	St	St	St	St	St	St
雲 量		7	7	9	6	6	7	8	9	10	9	8	7	4	6	9	8	5	4	7
風向		N	NW	W	WNW	ENE	NNW	WNW	W	N	N	NNE	ENE	NW	NW	NNW	N	WSW	NNW	NNW
風 力		2	3	2	2	2	2	3	2	2	1	1	1	4	3	2	1	2	2	3
波 浪		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
うねり		0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
透明度	(m)	4. 7	3. 7	4.5	4.5	5.9	7	8.9	7. 1	5. 7	4. 1	5. 9	6. 2	3.5			4. 9	4.6	3. 2	2. 9
水 色		4						5			7				6	6	5	7	7	6
水深	(m)	11.0			18.5	39.0	34. 5	35. 0	17. 5	13.0	11.5	17. 5	21.0	5.0	16.0	20.0	9.0	13.5	7.5	16. 0
水 温	0 m		19.7		17.0	19.8	19.3	19. 1	18. 4	17. 2	18. 1	18.8	18.6	16.8		18. 2	18.5	18. 0	16.3	17. 3
(℃)	2 m		19. 6 19. 6		16. 8 16. 8		19. 2 19. 2	19. 0 19. 0	18. 8 18. 9	18.4	18. 6 19. 0	18.9	18. 6 18. 6	16.7	18.0	18.3	18. 5 18. 5	18. 0 18. 0	16. 2	17. 2 17. 1
	5 m				16. 8	19. 7 19. 7	19. 2	19. 0	18. 9	18. 6 18. 7	19. 0	18. 9 18. 9	18. 6	16. 6	18. 1 18. 3	18. 3 18. 2	16.5	18. 0	16.1	17. 1
	20 m		19.6		10. 5	19.7	19. 2	19. 6	13.1	10.7	13.1	10. 9	18. 6		10.5	18. 2		17.5		11.0
	30 m		10.0			19. 7	19.3	19. 6					10.0			10.2				
	B-1m		19. 6	18.8	17.0		19.3	19. 6	19. 6	18.8	19. 1	18.8	18.6	16. 7	18.5	18. 2	18. 5	17.6	16.0	16. 3
DO	0 m				7. 85		7. 19	7. 02	6. 96	6. 82	6.50		6. 99	8. 08	6. 79	7. 35	7. 03	7. 92	7. 97	7. 89
(mg/l)	2 m	7. 13	6. 93	7.03	7. 90	7.04	7. 20	7.05	6. 89	6. 68	6. 45	6.82	7.02	8. 13	6. 80	7.36	6. 98	7. 96	8. 00	7. 93
	5 m	7. 12	6.92	7.02	7. 90	7. 03	7. 22	7.06	6. 83	6.80	6.34	6.82	7.01	7. 96	6. 76	7.37	6. 98	7. 97	8. 12	7. 95
	10 m	7. 11	6.94	7.03	7. 91	7.04	7. 22	7.05	6. 79	6.75	6. 29	6.82	7.01		6.66	7. 27		7. 92		8.08
	20 m		6. 92			7. 03	7.21	7.00					7.02			7. 13				
	30 m					7.04	7. 19	7.01												
	B-1m	7. 11	6.92	7.03	7.84	7.04	7.17	6.95	6.76	6.75	6. 23	6.83	7.02	8. 11	6.64	7.14	6. 89	7. 94	8. 10	8. 43
塩 分	0 m	32. 46	32. 54	32. 38	31. 67	32. 58	32.40	32. 20	31.69	29. 59	31.41	32.07	32. 03	31. 76	31. 79	32.14	32. 26	32.00	31. 35	32. 13
(psu)	2 m	32. 48	32. 56	32. 37	31. 65	32. 62	32.42	32. 19	31. 98	31.76	31. 93	32. 17	32.05	31. 78	31.80	32. 20	32. 30	32.01	31. 39	32. 13
	5 m		32. 57		31.65		32.43	32. 19	32.14	31. 91	32. 12	32. 18	32.06	31. 76		32. 21	32. 30	32.02	31. 48	32. 11
	10 m				31. 70		32.43	32. 19	32. 23	31. 99	32. 19	32. 18	32. 07		31. 99	32. 20		32. 01		32. 10
	20 m		32. 57			32. 63	32. 45	32. 46					32. 10			32. 20				
	30 m		00.57	00.00	01 70	32. 64	32.48	32. 47	00.45	00.01	00.10	00.10	00.10	01.74	00.07	00.00	00.07	01 04	01.50	01 00
NH ₄ -N	B-1m 0 m		32. 57 0. 00		31. 73 5. 36	32. 63 1. 48	32. 48 1. 53	32. 50 2. 88	32. 45	32. 01 8. 94	32. 18 7. 17	32. 16 4. 26	32. 10	31. 74 4. 74	32. 07 7. 43	32. 20	32. 37	31. 94 1. 99	31. 59 9. 15	31. 99 1. 86
(μmol/l)	5 m				4. 48		1.55	2.60		7. 02	5. 15		3. 27	5. 57	7. 17	3. 79	3. 44	1. 65	8.00	1. 68
	B-1m		0.11	2. 16	3. 51	2. 63	2.30	1. 77	2. 73	5. 74	4. 93	4. 23	3. 29	6. 30		3. 18	3. 81	1. 81	6. 48	1. 40
NO ₂ -N	0 m		0. 24					1.46			2.06		1.60	0.44	1. 54	0.44	0.84	0.00	0.89	0.40
(µmol/l)	5 m						1.30	1.48		1.75	1.95		1.60	0.43		0.41	0.82	0.04	0.82	
	B-1m	0.51	0.31	0.87	0.66	0. 21	1. 23	1. 17	1. 28	1.60	1.85	1. 78	1.64	0.50	1. 49	0.42	0. 75	0.17	0.74	0.17
NO ₃ -N	0 m	4.77	4. 97	4. 88	1.65	4. 05	1.82	2. 90	4. 36	6. 73	6. 79	3. 24	2.46	0.77	4. 12	1.08	4. 29	0.24	2. 11	2. 28
$(\mu\text{mol/l})$	5 m	4.96	4. 87	5. 08	1. 58	4. 30	1.82	2.85	3. 41	4. 43	4. 15	3. 36	2. 49	1.06	3. 90	1.14	4.70	0. 20	1. 91	1.69
	B-1m	5.14	4. 90	5. 16	1.30	3. 96	1.82	2. 26	2.36	3.66	3. 49	3.41	2.42	1.06	3. 05	1.20	4. 16	0.33	1.78	0.73
PO ₄ -P	0 m	0.38	0.40	0.45			0.35	0.43	0.53		0.61	0. 55	0.45	0.27	0.64	0.31	0.46	0. 15	0.30	0.49
$(\mu \text{mol/l})$	5 m				0. 25		0.36	0.42	0.50		0. 59		0.47	0.32			0.46	0.15	0.31	0.39
	B-1m							0.46				0. 56	1	0.53		0.34	0.47	0.16	0. 27	0.18
クロロフィル	0 m				3.94		1.04	1.07	0.76		1.71	1.81	1.41	2.44	1. 03		0.98	2.72	3. 31	5. 08
(μg/l)	5 m				4. 92		1. 12	1.06			1. 25			3. 14	1.02			3. 46	4. 86	
7 1-0	B-1m				4. 30			0.90		0.86	0.99		1.09	4. 21	0.87		0.94	3.05	5. 09	6. 84
フェオフィチン	0 m				0. 68 0. 47		0.36 0.31	0. 12	0. 38 0. 44	0. 46 0. 54	0.74	0.69	0. 43 0. 53	1.14	0.39		0. 29 0. 23	0. 98 0. 60	1.60	1.34
(μg/l)	5 m							0.48			0.65	0.46		1.14		0.73			1. 29	0.90
	B-1m	0.23	0.28	0.59	0.42	0.45	0.42	0.40	0.85	0.76	1.32	0.75	0.68	1.74	0.33	0.93	0.87	1.00	1.95	1.87

2024 (令和6) 年12月

発行 : 広島県立総合技術研究所

水産海洋技術センター

技術支援部

〒737-1207

広島県呉市音戸町波多見六丁目 21-1

TEL (0823) 51-2173 FAX (0823) 52-2683